
Fine-Grained, Dynamic Access Control
for Database-Backed Applications

Ezra Zigmond
Harvard University
Cambridge, MA, USA
ezigmond@acm.org

ABSTRACT

Flaws in access control checks in database-backed applications fre-
quently lead to security vulnerabilities. I present a new language,
ShillDB, for writing secure, database-backed applications. ShillDB
supports writing declarative database security policies as part of
program interfaces, and the language runtime enforces these secu-
rity policies.

CCS CONCEPTS

• Information systems→Relational database query languages;
• Security and privacy→Database and storage security; Soft-
ware security engineering; • Software and its engineering→
Interface definition languages;

KEYWORDS

contracts, capabilities, language-based security

ACM Reference Format:

Ezra Zigmond. 2018. Fine-Grained, Dynamic Access Control for Database-
Backed Applications. In Proceedings of 2nd International Conference on the
Art, Science, and Engineering of Programming (<Programming’18> Compan-
ion). ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3191697.
3213791

1 INTRODUCTION

Database-backed applications require fine-grained, dynamic restric-
tions on data access. For example, the information that a multi-user
web application can display depends on the currently logged-in user.
These restrictions are typically enforced by security code which
sits between the database management system (DBMS) and the
rest of the application code. However, hand-writing security checks
seems to be difficult and error-prone, as broken access control is a
common bug in web applications [11].

One can also enforce security policies at the DBMS level using
security tools provided by the database, but this makes it cum-
bersome to give different privilege levels to different application
components (which may be desirable if, for example, some applica-
tion components came from untrusted third parties).

To address these limitations of current approaches to database
access control, I propose ShillDB, a language for writing secure,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
<Programming’18> Companion, April 9–12, 2018, Nice, France
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5513-1/18/04. . . $15.00
https://doi.org/10.1145/3191697.3213791

database-backed applications. ShillDB enables reasoning about
database access at the language level through capabilities, which
limit what database tables a program can access, and contracts,
which limit what operations a program can perform on those tables.
ShillDB contracts are expressed as part of function interfaces, mak-
ing it easy to specify different access control policies for different
components of an application. These contracts act as executable
security documentation for consumers of ShillDB programs and
are enforced by the language runtime.1

2 CONTRACTS & CAPABILITIES FOR

SECURITY

ShillDB builds on recent work in language-based security which
has demonstrated that contracts can be used together with capabil-
ities to enforce security policies at program interfaces [9, 10].

Contracts [4, 7] are a language feature that allow programmers
to write specifications on values, such as functions and objects.
These specifications are checked during program execution. Since
contracts do not need to be statically checkable, they can express
more complex specifications than those permitted by typical static
type systems.

A capability is an unforgeable token that identifies a resource
(such as a file or a database table) and conveys the authority to
perform some action(s) on that resource. Capability-safe languages
limit the origins of capabilities, providing a basis for reasoning
about the authority that programs have during execution [8].

3 DESIGNING APPLICATIONS IN SHILLDB

In ShillDB, access to database tables is only possible through view
capabilities which represent a restricted window into a database.
Programmers can derive new view capabilities from existing ca-
pabilities (e.g. using where) as well as fetch or manipulate a view
capability’s underlying data. Function interfaces can specify con-
tracts on view capabilities which allow for fine-grained restrictions
on how capabilities can be used.

Following the design of Shill [9], a ShillDB program consists
of an ambient program and a capability-safe program. Ambient
programs can create new view capabilities using ambient authority
(the privilege of the user invoking the program). Capability-safe
programs do not have ambient authority and can only derive new
capabilities from capabilities they initially receive. It is thus possible
to reason about the database privileges a capability-safe ShillDB
program has just by looking at what capabilities it is passed and
what the program’s contract is.

1The implementation of ShillDB is available at https://github.com/ezig/shilldb

https://doi.org/10.1145/3191697.3213791
https://doi.org/10.1145/3191697.3213791
https://doi.org/10.1145/3191697.3213791
https://github.com/ezig/shilldb

<Programming’18> Companion, April 9–12, 2018, Nice, France Ezra Zigmond

Figure 1: An overview of contracts and capabilities in

ShillDB. The ambient program creates a capability for a

students table, which is wrapped in a contract and passed

to a capability-safe program. In this case, the contract only

allows reading the table, so any operations invoked by the

capability-safe program other than fetch will be rejected.

66
68
70
72

Av
g
ru
nt
im

e
(s
)

Read &Write

36
38
40
42

Read Only

26
28
30
32

Insert Only

Figure 2: Average time required to run library reservation

systemworkloads for the baseline (◦), capability-based inter-

face (□), and ShillDB implementation (△). 95% confidence

intervals are indicated by vertical bars (but may be obscured

by plotting symbols). Note that the y-axes begin at different

values but the scale is consistent between plots. The over-

head of the contracts and capabilities compared to the base-

line is modest for all workloads (less than 5.4%).

To run a ShillDB program, a user invokes the ambient program.
Figure 1 illustrates how ShillDB uses contracts and capabilities to
provide security guarantees. Ambient programs can create capabili-
ties for database tables and pass these capabilities to capability-safe
programs. The interface of a capability-safe program applies con-
tracts to capabilities. Within a capability-safe function, contracts
act as proxy objects. These proxies intercept operations invoked
on capabilities and can choose whether to forward an operation
to the underlying capability (which will perform an action on the
database) or to reject the operation.

ShillDB contracts enable a wide range of security policies, such
as requiring that an inner join be performed on two tables before
the contents of either table can be fetched, or only allowing the
average value of a column to be viewed.

4 EVALUATION

To evaluate the usability and performance of ShillDB, I have used
it to implement a library reservation system. ShillDB’s contract
system made it possible to express many realistic security policies
for the library application. For example, contracts prevent users
from deleting another user’s reservations and allow users to see
the total number of reservations for a book but not which users
have reserved it.

Figure 2 shows the run time (averaged over 50 trials) for three
different sequential request workloads for the library server. I ran
the workloads using three different server implementations: one
using Racket’s [5] standard database interface as a baseline, one
using ShillDB’s capability-based database interface, and one using
both the capability-based interface and contracts. The overhead of
using both contracts and capabilities was at most 5.4% compared
to the baseline.

5 RELATEDWORK

Contracts have been used to enforce a variety of access policies [3, 6,
9]. Other systems have approached language-level database security
by using static type systems to enforce access control policies [1,
2] or dynamic checks to enforce information flow policies [12].
ShillDB is the first to use contracts and capabilities for database
access control.

ACKNOWLEDGMENTS

I am grateful to Stephen Chong and Christos Dimoulas for their
helpful comments and advice. I thank Scott Moore for his feedback
on an early version of this work.

REFERENCES

[1] Luís Caires, Jorge A Pérez, João Costa Seco, Hugo Torres Vieira, and Lúcio Ferrão.
2011. Type-Based Access Control in Data-Centric Systems. In ESOP. Springer,
136–155.

[2] Adam Chlipala. 2010. Static Checking of Dynamically-Varying Security Policies
in Database-Backed Applications.. In OSDI. 105–118.

[3] Christos Dimoulas, Scott Moore, Aslan Askarov, and Stephen Chong. 2014. Declar-
ative policies for capability control. In Computer Security Foundations Symposium
(CSF), 2014 IEEE 27th. IEEE, 3–17.

[4] Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for higher-order
functions. In ACM SIGPLAN Notices, Vol. 37. ACM, 48–59.

[5] Matthew Flatt and PLT. 2010. Reference: Racket. Technical Report PLT-TR-2010-1.
PLT Design Inc. https://racket-lang.org/tr1/.

[6] Phillip Heidegger, Annette Bieniusa, and Peter Thiemann. 2012. Access per-
mission contracts for scripting languages. ACM SIGPLAN Notices 47, 1 (2012),
111–122.

[7] Bertrand Meyer. 1992. Applying ’design by contract’. Computer 25, 10 (1992),
40–51.

[8] M Miller. 2006. Robust Composition: Towards a Unified Approach to Access
Control and Concurrency Control. Johns Hopkins: Baltimore, MD (2006), 302.

[9] Scott Moore, Christos Dimoulas, Dan King, and Stephen Chong. 2014. SHILL: A
Secure Shell Scripting Language. In OSDI. 183–199.

[10] Scott David Moore. 2016. Software Contracts for Security. Ph.D. Dissertation.
[11] OWASP. 2017. OWASP Top Ten Project. https://www.owasp.org/index.php/

Category:OWASP_Top_Ten_Project
[12] Jean Yang, Travis Hance, Thomas H Austin, Armando Solar-Lezama, Cormac

Flanagan, and Stephen Chong. 2016. Precise, dynamic information flow for
database-backed applications. In ACM SIGPLAN Notices, Vol. 51. ACM, 631–647.

https://racket-lang.org/tr1/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

	Abstract
	1 Introduction
	2 Contracts & Capabilities for Security
	3 Designing Applications in ShillDB
	4 Evaluation
	5 Related Work
	Acknowledgments
	References

