
CS 263 Final Project
Fall 2016

Accelerating Good (and Evil): Using Accelerometer
Data to Catch Spam (and Spy on People)
Ezra Zigmond, Ankit Gupta, Zack Chauvin

Abstract
To prevent automated systems from accessing certain webpages pages, website developers often add
techniques to verify that a user is a human. These techniques generally involve tasks that are relatively easy for
humans but difficult for automated systems. One of the most popular such methods is CAPTCHA. However,
these tasks can still be difficult or unpleasant to complete for humans. In general, they can reduce the quality of
user experience, which may make a user frustrated when interacting with a system, particularly for those with
disabilities.

To address these issues, we explore a replacement for CAPTCHA that clandestinely uses a mobile client’s
motion data to determine whether the client is an automated system. This motion data can be collected through
Safari and Chrome mobile browsers on iOS and Android without any user permission. We analyze techniques
that adversaries could use to defeat the classification ability of such a system, and propose and implement
means to prevent such adversaries. Finally, we compare our results to other methods for simplifying the user
verification pipeline, notably reCAPTCHA by Google.

Ultimately, we find that the model is robust against a variety of threats and believe that our technique can
significantly improve the user experience, particularly for those with learning disabilities. However, this model
does still contain vulnerabilities that allow adept attackers to subvert the system. Thus, further development is
needed before this technique can be widely deployed.

Contents

1 Introduction 2

2 Related Work 2

2.1 CAPTCHAs and Attacks on CAPTCHAs 2

2.2 Usability Limitations of CAPTCHAs 3

2.3 Surveillance via Accelerometer Data 3

3 Design of CAPTCHA Challenge 3

3.1 Threat Model . 3

3.2 High-Level Learning Framework 3

3.3 Collecting Human Examples 4
Surveying Users • Activity-specific Data

3.4 Generating Adversarial Examples 4
Timestep Sampling • Difference Sampling • Random Noise •
0-centered Gaussian Noise • Hidden Markov Model

4 Design of CAPTCHA Server 5

4.1 Client Key Management 5

4.2 User Verification . 5

4.3 Integrating with a Client 6

4.4 Security . 6

5 Evaluation 7
5.1 Evaluation Methods . 7

Human vs Not-Human • Preventing Replay Attacks • Human
Activity

5.2 Results and Evaluation of Success 8
Human vs. Not-Human • Preventing Replay Attacks • Human
Activity

6 Conclusions and Future Work 9
6.1 Comparison to current reCAPTCHA 9
6.2 Privacy Discussion . 9
6.3 Future Work . 9

References 10

Accelerating Good (and Evil): Using Accelerometer Data to Catch Spam (and Spy on People) — 2/10

1. Introduction
Web sites often wish to distinguish page access by human
users and by automated bots. For example, an online vendor
may wish to prevent ticket scalpers from using scripts to im-
mediately purchase tickets and re-sell them at a much higher
price. Thus, over time, web programmers have deployed a
variety of means to prevent unauthorized access by automated
systems into web services. A class of solutions for this is
called CAPTCHA [1], and the most widely used CAPTCHA
is reCAPTCHA by Google [2].

reCAPTCHA is a system created to distinguish between
humans and bots. The original reCAPTCHAs presented a
short string of slightly obfuscated text in image form, and the
user was asked to write what was in the image in a text box
to verify their identity. However, these images are difficult to
parse and slow down the process of trying to access a desired
resource.

Furthermore, modern machine learning techniques for
image recognition can reliably solve reCAPTCHA, reporting
accuracy levels above 99%[2]. As such, Google re-engineered
reCAPTCHA to increase the difficulty of the task and incor-
porate other techniques.

Currently reCAPTCHA uses a variety of methods to at-
tempt to verify that a user is a human. For example, re-
CAPTCHA may present a series of images, and ask the user
which of those images contains a certain object, such as a
particular animal. This is a task that should be relatively easy
for a human to solve, but can be cumbersome, as we discuss in
greater length in Section 2.2. This was also difficult for bots
to defeat in the past, but recent demonstrations have shown a
mix of reverse image search and deep learning techniques for
image classification can quickly and accurately solve image-
based CAPTCHAS [3].

However, the current reCAPTCHA system does not al-
ways require a user to solve an image task. Much of the time,
the user can just click a single button that says “I’m not a
robot”. In the background, it is thought that this system works
by tracking a user’s mouse movements and scrolling behavior
[4] to determine whether the behavior appears to be that of a
human. If so, no image challenge is presented. If the behav-
ior seems unusual, an image challenge is presented, some of
which is solvable by the aforementioned techniques.

This shift to incorporate more hidden elements like mouse
movement has the potential to make CAPTCHAs easier and
faster for humans. However, the mouse movement framework
has the downside that it relies on desktop use, since similar
tracking of the mouse isn’t applicable to mobile phones. Be-
cause of this, mobile versions of reCAPTCHA must rely on
other sources of information to judge whether or not a user is
a human.

In this paper, we present a mobile-friendly CAPTCHA
system that is empirically difficult to thwart. The system is
based on our hypothesis that accelerometer data which tracks
the way that a user holds a phone as they engage with the
CAPTCHA can be used to differentiate between human and

robot agents, analogous to mouse movement on desktop. The
creation of a CAPTCHA system which uses accelerometer
data instead of challenges will allow mobile users to more
easily and quickly prove that they are humans. As Internet
access becomes increasingly prevalent on mobile devices,
an accelerometer-based CAPTCHA system will improve the
browsing experience while continuing to deny bots access to
protected resources.

While our research on accelerometer tracking for mobile
has the potential to be beneficial for the browsing experi-
ence, we also consider the potential for abuse of this data. In
addition to evaluating the effectiveness of this approach for
CAPTCHAs, we also explore what can be learned by having
accelerometer data for users that are attempting to access cer-
tain pages. We evaluate the ability of the service to tell what
type of activity the user is engaged in while completing the
CAPTCHA, whether it be walking, sitting, or riding in a car.
This information could be useful to advertisers who are inter-
ested in activity details about specific consumers. This use
of information may be considered unacceptable by users of
the CAPTCHA and must therefore be explored to understand
whether or not this technology could be deployed in practice.

Our contribution in this paper is three-fold:

1. We present a motion-based CAPTCHA challenge and
evaluate its effectiveness at catching non-human users.

2. We describe the design of a CAPTCHA server imple-
mentation and consider its security properties.

3. We demonstrate that a malicious company providing
a motion-based CAPTCHA service could easily use
motion data to track user behavior with high accuracy.

2. Related Work
2.1 CAPTCHAs and Attacks on CAPTCHAs
Our research builds upon previous work in the bot detection
space. One area of research has covered the variety of options
that are available to services implementing a CAPTCHA.
The Asirra system from Microsoft Research documents an
innovation to CAPTCHA systems that previously used text-
based challenges. Their implementation uses imaged-based
challenges requiring users to distinguish one class of photos
from another in an attempt to beat bots that are unable to do
this difficult visual classification [5].

Even within the space of image-based CAPTCHAs, there
has been a lot of research concerning the many possible types
of challenges that could be used to identify bots. In their paper,
Chew and Tygar detail three image challenges concerning
naming, distinguishing and identifying [6]. Another possible
challenge is identifying which image is oriented correctly, as
was explored in [7].

While these challenges have the advantage that they are
easier for human eyes and harder for bots to beat using com-
puter vision than text-based challenges[7], they are still a nui-
sance for users. This has lead to the exploration of techniques

Accelerating Good (and Evil): Using Accelerometer Data to Catch Spam (and Spy on People) — 3/10

that do not require explicit challenges, such as Google’s new
reCAPTCHA. This system reduces the strain on users by not
always requiring a challenge. There are currently no papers
either from Google or third parties detailing how this system
functions, but interviews with Google employees indicate that
Google uses mouse movement data of agents that interact with
the reCAPTCHA to determine if they are humans or bots [4].

The work on alternatives to classic CAPTCHAs was ben-
eficial both because it reduces the burden on the user trying
to prove their humanity, but also because text and image chal-
lenges are becoming more vulnerable to machine learning
attacks. For instance, a research group was able to achieve
82.7% accuracy on the Asirra challenge [8]. Similarly, an-
other paper manages to cause the Google reCAPTCHA to
provide an image challenge, and then uses visual learning
techniques to solve the image challenge with 70.78% accu-
racy [3]. Both of these papers reveal that current CAPTCHA
systems are vulnerable to learning techniques and motivate
exploring alternative methods of bot detection.

2.2 Usability Limitations of CAPTCHAs
CAPTCHAs present significant usability hurdles that can
worsen user experience. Users report widespread frustration
with CAPTCHA services and that users with learning disabil-
ities experience even greater frustration than users without
such disabilities [9]. Other research has suggested that despite
the designers of CAPTCHAs generally believing that they
should be easy for humans to solve, people routinely have a
difficult time solving them [10].

It should be noted that Google has improved its reCAPTCHA
system over time, and it itself has claimed that the primary
reason for this was to keep preventing bots while improving
the user experience, ostensibly in reaction to some of the
aforementioned research [11].

Furthermore, Google has now indicated that they are
launching a new version of reCAPTCHA this year that is
mysteriously called “Invisible reCAPTCHA” [12], which they
claim will work on both desktop and mobile clients. While the
mouse-tracking system discussed before along with browser
fingerprinting gives ample means to implement such a system
on desktop, the relative lack of access to input sources on
mobile devices makes the data sources on such a system less
clear for mobile devices. As such, we intend to investigate
the feasibility of using accelerometer data as a data source for
such a system.

2.3 Surveillance via Accelerometer Data
As we explore the possibility of collecting accelerometer data
for CAPTCHAs, we must also consider what can be learned
from this data to evaluate the potential of malicious surveil-
lance. Research has also been done in this field, with a study
achieving 92% accuracy on classifying a large amount of ac-
celerometer data collected from mobile devices as jogging,
walking, standing, stair climbing and sitting. [13] This re-
search shows that if a service were to collect accelerometer

data for the purpose of determining whether an agent is a hu-
man or a bot, it could also use the data to determine what the
user is doing while interacting with the CAPTCHA. Our work
expands on this research by attempting to accomplish simi-
larly accurate classification of accelerometer data while not
relying on a huge amount of data or complex models which
are two traits of the prior research. We show in our results
that even with small amounts of unlabeled accelerometer data,
we can predict user behavior with high accuracy.

3. Design of CAPTCHA Challenge

3.1 Threat Model
A CAPTCHA server has a classifier, described in the next
section, that has been trained to distinguish between human
and non-human data. For the purposes of this paper, we will
refer to non-human data interchangeably as robot or bot data.

We are assuming that the adversary has not compromised
the server and stolen the actual model. However, we are as-
suming that the adversary has reverse engineered the protocol
used by client sites to send non-malicious user data to the
server and can send a large number of requests to the server at
any given time point, such as through a botnet. The adversary
can also successfully spoof its user agent headers that it ap-
pears all of the requests are coming from a mobile device. We
assume that the server can handle a large number of requests,
and has all of the usual protections from denial of service
attacks.

Furthermore, we assume that the adversary knows that the
server generally uses the classification architecture described
in the next section, and can relatively easily write a similar
architecture on its own. However, we assume that the adver-
sary has substantially fewer samples than the creator of the
CAPTHCA server. For example, the server may be run by a
large technology company, who can track a few seconds of
motion data from its millions of users, while the adversary
cannot access nearly the same volume of information quickly.
This means that it would be impractical for an adversary to
merely collect legitimate data from humans and send it to the
server. Instead, the adversary must use whatever data it has
collected to generate large amounts of fake data to try to trick
the server. We do not aim to protect against the case where an
attacker can easily collect human motion data (for example, if
the attacker were the owner of a large social media site used
on mobile phones).

3.2 High-Level Learning Framework
Fundamentally, our CAPTCHA challenge is a classification
problem, where the CAPTCHA server judges whether an
input sequence is a human or is machine-generated. Thus,
the input is a sequence (not necessarily of fixed size) of data
from a user’s accelerometer, and the classifier must determine
whether this sequence corresponds to a human-like sample
or a robot-like sample. The fundamental hypothesis we have
is that it is difficult to create large numbers of human-like
samples without having to manually collect the data, which

Accelerating Good (and Evil): Using Accelerometer Data to Catch Spam (and Spy on People) — 4/10

is slow and expensive. However, it should be relatively easy
to train an algorithm that can determine whether a particular
sample is a human or not.

Furthermore, we wished to build a learning framework
without any pre-engineered features. Past efforts at using
accelerometer data to characterize user behavior have in-
volved this type of manual feature engineering. However,
this presents a security risk, as more obvious features will
be easier for an attacker to engineer to defeat our classifier.
Moreover, not manually engineering features prevents us from
encoding our own biases about the important aspects of the
accelerometer.

In accordance with this, we used an acceptor recurrent neu-
ral network (RNN), written in Tensorflow (https://www.
tensorflow.org/), to write our classifier. An acceptor
RNN is a model that takes sequential data as input. Then, the
RNN cell loops over the data, and at each step, applies a series
of linear and non-linear transformations in order to update an
internal fixed-size state vector and outputs a fixed-size vector
of size H. After looping over the full sequence, the final output
vector offers a fixed-size encoding of the entire sequence, and
can be fed into any linear classification model, which in our
case is a 1 hidden-layer feed-forward neural network.

Let M be the number of time steps in a user-supplied
sample, and K be the number of variables output by the ac-
celerometer. Additionally, let there be N samples to train
on.

In our case, the input is a vector of shape N x M x K,
where each sample is thus a vector of shape M x K. The RNN
will loop over the M steps of a particular sample, and output a
vector of size H, which will be the input to the linear classifier.
The classifier will emit the probability of the sample being
human-supplied, and to make decisions, we will pick human
if the probability is more than .5.

3.3 Collecting Human Examples
3.3.1 Surveying Users
In order to train our model, we surveyed Harvard College
undergraduates to collect motion tracking information. We
solicited users via Harvard mailing lists, indicating to users
that we would capture 4 seconds of motion information when
they clicked a button on a web-page we developed. This
webpage remains hosted at cs263.herokuapp.com.

From these users, we obtained 229 samples of motion data
from a variety of conditions, as we did not specify to users
any particular way that they should hold their phones.

Each of these data samples was of size M x K, where
M is the number of time steps, and K = 6, the number of
pieces of data that the accelerometer emitted. Accelerome-
ter data was collected by logging data from the JavaScript
DeviceMotionEvent[14]. At each of the M time steps that the
event fired, we recorded six values: the X, Y, and Z acceler-
ations in m/s2 and the X, Y, and Z rotation of the device in
degrees (referred to in the documentation and in our code as
alpha, beta, and gamma respectively).

3.3.2 Activity-specific Data
Afterward, we decided it would be good to supplement the
data we collected with data specific to certain activities. Since
we did not trust surveyed individuals to reliably indicate
their actions at the time of visiting the webpage, we col-
lected this data ourselves. We created a second webpage at
cs263.herokuapp.com/experiment, where we man-
ually collected data while conducting the following activities:
walking, sitting, going up stairs, being in a car, and leaving the
phone on a table. This generated an additional 200 samples
that were of sufficient length.

These samples were then used for our various classifica-
tion tasks.

3.4 Generating Adversarial Examples
In this section, we describe our method of generating adver-
sarial examples. In particular, our threat model involves an
adversary that will try to beat our classifier by presenting
computer-generated data, which may have been generated
using a sample of real human data. To prevent this, we gen-
erated our own non-human data and trained the classifier to
recognize it as not human-like. The following subsections
survey the various techniques we used to generate this data.

3.4.1 Timestep Sampling
For each of the M x K different values in the human examples,
we calculate the mean and variance of that value across all
human examples. We then generate adversarial examples by
sampling each value from a normal distribution defined by the
calculated mean and variance for that value.

3.4.2 Difference Sampling
The problem with the timestep approach alone is that it ig-
nores that the acceleration of a user’s device is likely to be
correlated across timesteps (a user is relatively unlikely to jerk
their phone abruptly between two timesteps). Therefore, we
generated adversarial examples that attempt to mimic human
changes between timesteps. To this end, for each of the (M
- 1) x K pairs of adjacent sequential points, we calculate the
mean and variance of the difference between the second point
and the first point. We then generated adversarial examples
where the first timestep is generated as above (based on the
mean and variance of the points in the first timestep) and the
remaining M - 1 timesteps are generated by adding differ-
ences sampled from the calculated means and variances to the
previous timestep.

3.4.3 Random Noise
To teach the model to ignore completely random values, we
generated examples that look like random noise. Based on the
minimum and maximum values across all human examples
for each of the M x K different values, we generate adversar-
ial examples by sampling each value uniformly between the
minimum and maximum for that value in the human data.

https://www.tensorflow.org/
https://www.tensorflow.org/
cs263.herokuapp.com
cs263.herokuapp.com/experiment

Accelerating Good (and Evil): Using Accelerometer Data to Catch Spam (and Spy on People) — 5/10

3.4.4 0-centered Gaussian Noise
An attacker might take a legitimate human sample and add a
small amount of 0-centered noise to it to avoid try to avoid
a naive replay-prevention system that only detects sending
exact duplicates of previous data. To generate the adversarial
data, we picked a random sample from the legitimate human
data and for each of the M x K values in the sample added
noise sampled from a normal distribution centered at 0 with
variance equal to the signal-to-noise ratio of the value in the
human data.

3.4.5 Hidden Markov Model
Finally, we generated a form of adversarial data representing
an attacker who came up with a new form of data that we had
not anticipated. To this end, we trained a five-state hidden
Markov model (HMM) on human data using the Python hmm-
learn library (http://hmmlearn.readthedocs.io/
en/latest/). We then sampled sequences from the trained
HMM model to generate adversarial data.

4. Design of CAPTCHA Server
We now discuss the design and implementation of the central-
ized CAPTCHA server that serves the motion classification
models and allows client servers to authenticate users. From
the perspective of a client website wishing to use the service,
the process is very similar to using Google’s reCAPTCHA.
(In the following sections, client refers to someone who signs
up for our service and wishes to verify that visitors to their
website(s) are human. A user refers to someone trying to
access the client’s site).

4.1 Client Key Management
Logging in: In order to use the CAPTCHA service, a client
must log into a valid Google account using Google’s OAuth2
flow. We require users to log in to manage their client keys for
three primary reasons: first so that if a user forgets their client
credentials, they can log into the CAPTCHA server to find the
information, and second so that we can place a per-account
limit on the number of client credentials (to prevent an easy
DOS attack where a malicious client repeatedly requests new
keys in an attempt to consume disk space on the server or
occupy the server in creating keys) and finally so that abuses
of a particular client key could be traced back to a particular
user (this feature could be useful for example to contact a
user with an alert if their website is receiving a spike in spam
traffic or to ban the user if network logs seem to suggest they
are using their client keys to attempt to break the CAPTCHA
model). We chose to require sign-in through a Google account
since presumably Google has existing security measures in
place to prevent malicious account sign-ups which makes it
more difficult for a banned user to simply sign up for another
account.

Managing keys: A client who has successfully authenti-
cated with a Google account can view a list of their created
client keys, and create new credentials (up to a limit set by the

Figure 1. Network diagram of steps to verify a user as
human.

server). A client may wish to create multiple keys in case they
run multiple websites and want separate keys for each site to
minimize the potential damage if one key is compromised.
Logged-in clients can also revoke their own keys.

A client key consists of two parts: a site ID which pub-
licly identifies the client and a client secret which should only
be known by the client and the CAPTCHA server. Both
the site ID and the site secret are 40-byte ASCII strings
(we chose this length based on the length of the client se-
crets given out by Google’s reCAPTCHA) generated by us-
ing the secure PRNG in the Python Cryptography Toolkit
(https://www.dlitz.net/software/pycrypto/). The site ID is nec-
essarily unique across all client keys but multiple clients may
have the same site secret with very low probability.

4.2 User Verification
We now detail the steps for a user wishing to access a sensitive
part of a client website where the client wants only human
users (for example, account creation), so the client can verify
that they are a human user. Figure 1 summarizes the network
messages exchanged between the user, client, and server as
part of the verification process.

User requests a token : A user sends an HTTP POST re-
quest to the CAPTCHA server containing the site ID of the
client site they wish to access and a 260 by 6 array of floats
which corresponds to 4 seconds of JavaScript motion events.
The CAPTCHA server checks that the site ID is valid and
returns a 400 error if an invalid site ID is given. Otherwise,
the CAPTCHA server returns a token to the user. A token
is a random 420-byte ASCII string (this length was chosen
by observing the length of tokens generated by Google’s re-
CAPTCHA). Note that a token is returned to the user whether
or not the CAPTCHA server verifies the motion data as hu-
man, making it more difficult for the user to attempt to use
the CAPTCHA server as an oracle to defeat the verification
model. Internally, before returning the token to the user, the
CAPTCHA server verifies whether or not the user is human.

http://hmmlearn.readthedocs.io/en/latest/
http://hmmlearn.readthedocs.io/en/latest/

Accelerating Good (and Evil): Using Accelerometer Data to Catch Spam (and Spy on People) — 6/10

If the user is verified as human, the CAPTCHA server assigns
a timestamp to the token and stores it in a database that maps
site IDs to valid user tokens for that site. If the server identifies
the user as being non-human, the token is discarded.

Client verifies the user: A user can then present the token
received from the CAPTCHA server to the client. The client
sends the token, its site ID, and its site secret to the CAPTCHA
server. If the site secret is invalid for the site ID, a 403 error
is returned. We require that the site secret be sent to verify
a token to prevent users from trivially checking if the token
they received is valid infeasible and to prevent clients from
searching for valid tokens. If the token submitted by the
client is valid for the site and has not expired, a 200 response
is returned to the client indicating that the user has verified
themselves as human. If the token is expired (as measured by
a server-defined token lifetime) or if the token is invalid for
the site, a 403 error is returned (the error message indicates
whether the token was expired or invalid in case a client wishes
to treat these cases differently. If the server responds that the
user is human, the client can then allow the user to perform the
requested action with high confidence that the user is human.
If the server indicates that the user is non-human, the client
could choose to reject the user outright or to present a different
CAPTCHA-style challenge.

4.3 Integrating with a Client
Integrating the CAPTCHA system with a client’s existing
website should be no more difficult than integrating with
Google’s reCAPTCHA scheme. The client could embed a
JavaScript from a CDN run by the CAPTCHA service. The
client can then place an HTML div with the id ”captcha” and
the JavaScript code will populate the div with an ”I am not
a robot” button. When the user clicks the button, the client
JavaScript will collect 4 seconds of motion data from the user
and then complete the token-request process described above.
The JavaScript will then populate a field in the div with the
received token which can be submitted as form data to the
client server. Note that this could also be an invisible div that
is passively capturing accelerometer data, and that sends it for
verification at some time without informing the user.

The JavaScript would also need to detect (presumably
based on user-agent headers) whether the user is accessing
the client site through a mobile browser and only present the
motion-based CAPTCHA in this case. If the user is on a
desktop device, the client could then choose a fallback image-
or text-based CAPTCHA to present.

The only server-side modification necessary on the part
of the client is verifying the submitted token before allowing
a user to perform a sensitive action. While we have not im-
plemented the bespoke JavaScript necessary for this sort of
integration as part of our prototype, it could easily be achieved
by modifying the code used for our data collection server.

4.4 Security
We now consider potential security risks to the implementa-
tion of the CAPTCHA server. Note that this does not exhaus-
tively consider attacks on any CAPTCHA server (for example,
simple DoS attacks by repeatedly asking the server to verify
invalid tokens), but focuses on non-obvious vulnerabilities
with our model.

Replay Prevention One of the central risks is that if our
classifier does not work perfectly, an adversary may eventually
determine a sequence of inputs that is incorrectly classified as
human, and then repeatedly use that. Even worse, an attacker
can simple record herself holding a mobile device, and then
use that manually-collected data, or small perturbations of it,
as inputs to the classifiers.

One potential solution to this is to have a static list of past
inputs (or hashes of them) over some bounded amount of time.
However, an attacker can easily thwart this attack by adding
small zero-centered Gaussian noise with low variance to each
data sample, which will be small enough to note change the
result of our classification model, but different enough to lead
to a different stored hash.

As such, we develop a binning model to reduce the impact
of added noise. In particular, rather than storing a hash of
the entire sequence, we first take the mean of the sequence
over time. Thus, we take our input sequence of size M x K
and take the mean over M, giving a one-dimensional vector of
size K. Then, we break each element of the vector K into D
bins, where D is a configurable parameter, and where the bins
were developed by looking at the maximum and minimum
possible values for each of the K variables emitted from the
accelerometer.

Then, we place each of the vector elements into the appro-
priate bin (between 0 and D), and hash the resultant vector.
Since D is configurable, we are able to modulate how much
variance we find acceptable without considering the input to
be different. In particular, if a user now adds small noise
to human samples, this hashing strategy will lead to similar
but different samples to hash to the same value, which we
can then reject. We use the built-in Python hash function -
naturally, this hash function can be replaced with any hashing
algorithm.

If the user uses very different samples, then our classifier
will no longer view it as human-like, and will reject it. Note
that this also naturally prevents replay attacks, since using the
sample input will quickly hash to the same value as a previous
one.

Adversarial Machine Learning Attacks Closely related to
replay attacks are a class of attacks related to the fact that we
are using machine learning models whose inner function is
generally obfuscated to the implementer, and whose decision-
making is not always obvious to the programmer that designed
them. As a result, there is considerable literature about various
techniques that have generated adversarial examples that can
trick machine learning models into making incorrect predic-

Accelerating Good (and Evil): Using Accelerometer Data to Catch Spam (and Spy on People) — 7/10

tions.
For example, in [15], the authors show how adding a small

amount of noise that is imperceptible to human eyes to an
image can reliably fool a classifier that correctly classifies im-
ages to instead classify all of them as ostriches. Fascinatingly,
a human would see no differences in these images, but small
changes in pixel density can propagate errors through the
model and ultimately lead to a significantly different result.

The techniques we described in 4.4 are designed to prevent
this type of attack, since the amount of noise added should be
small enough to prevent adversarial noise added to fool the
machine learning models, but generally too little noise to fool
the binning technique.

Timing Attacks: When a user asks the CAPTCHA server
for a new token, the server always generates a token and vali-
dates the data sent by the user but only stores the token in a
database if the token is deemed valid. Depending on the par-
ticular implementation of the server design, it may be feasible
to measure this timing difference and enable the client to use
the CAPTCHA server as an oracle to try to defeat the model.
If this is of particular concern, an implementation could mod-
ify the server so that it always stores the token regardless
of whether or not it is valid, along with a tag indicating the
validity of the token. This would eliminate the timing channel
attack but would enable a DoS attack in which a malicious
user floods the server with junk data, forcing it to generate
and store many tokens.

Token Harvesting: Unlike Google’s reCAPTCHA, our server
implementation does not restrict on which domains a user is
allowed to complete the challenge for a particular site ID.
This is because we were unable to find a satisfactory fix to
the exploit in Google’s site restriction identified in Sivakorn
[3]. Therefore our CAPTCHA server implementation is vul-
nerable to the token harvesting described by Sivakorn [3].
The appeal of this token harvesting is that it allows a mali-
cious user to generate many valid CAPTCHA tokens while
bypassing potential anti-hammering protections of the client
server. However, we attempt to limit the feasibility of such
schemes by adding a timestamp to each token and considering
an otherwise valid token to be expired if its timestamp is too
old. If the server sets the lifespan of a token to be sufficiently
small, we believe offline token harvesting is less appealing
because an attacker cannot collect and sell tokens in advance,
but rather would have to generate tokens offline and use them
immediately. (Note that Sivakorn [3] confusingly uses the
term token harvesting to refer to harvesting cookies that are
used by Google’s risk-analysis model, which is not applicable
to our design.)

5. Evaluation
5.1 Evaluation Methods
In this section, we describe the methods we used to evaluate
the efficacy of our approach. We both evaluate the effective-

ness of the classifiers at classifying what they are intended to
model, and at resisting various forms of malicious attacks.

Note that we do not claim to have exhausted all of the
possible strategies that an adversary can use. However, we do
try a variety of methods and report our performance against
them broadly.

In general, we generated independent training and test sets
using the methods below. Both of these sets were made by
splitting the human data into 80% training and 20% testing,
and independently generating non-human data by the meth-
ods described. We evaluated the performance of the trained
classifier by testing it on the test dataset and calculating the
classification accuracy.

5.1.1 Human vs Not-Human
The first classifier we trained was designed to distinguish
between human samples and non-human samples. To train this
classifier, for the human-samples, we used the data collected
from surveyed users and ourselves through the methods that
we described earlier. For the activity-based data, we stripped
the activity that the person was doing for this classification
task, since the goal was just to determine whether or not the
data came from a human.

The difficult part in this case was to generate the negative
samples, meaning examples of non-human data. Section 3.4
describes a variety of methods for creating these adversarial
examples. To actually test the effectiveness of these various
methods, we trained one classifier with negative samples from
each of these methods, along with one classifier trained with
a mix of these methods. We originally did not include the
hidden Markov model (HMM) generated data in the mixed
model to see how well the mixed model would perform against
previously unseen types of data. However, upon observing
that the mixed model performed extremely poorly (around
11% accuracy) against HMM-generated data, we trained a
second mixed model that also included HMM-generated data.

Furthermore, when we tested our model, we tested each
one with a variety of test sets. The real human data on each
of those test sets was the same, but the non-human data was
generated from each of the techniques in Section 3.4. We
did this was to determine how effective each of the trained
classifiers were against each of the adversarial methods. A
server could then combine various versions of the trained
classifiers if they appeared to be effective at detecting different
sets of adversarial techniques.

5.1.2 Preventing Replay Attacks
To determine our ability to prevent malicious attacks, we
deployed our trained classifier on the CAPTCHA server de-
scribed in Section 4, and tested its ability to either detect a
non-human user altogether, or prevent a non-human user from
doing a replay attack using the technique we described in
Section 4.4. In the Results section, we report the accuracy
of this method on both detecting malicious attacks through
the classifier or catching them through the replay detection
technique.

Accelerating Good (and Evil): Using Accelerometer Data to Catch Spam (and Spy on People) — 8/10

Figure 2. Comparative accuracy of different trained models on adversarial data types.

5.1.3 Human Activity
Next, as we noted earlier, while these accelerometer data
can seem innocuous, we hypothesized that it can actually be
used to easily determine the activity that a user is performing.
Moreover, we believe it can be used to do this without any
feature engineering - in other words, from the raw data emitted
from the accelerometer, we can train a simple model that can
predict what the user is doing with high accuracy.

Thus, for this classification task, we split the data that we
collected ourselves, which along with accelerometer timesteps
had a label that indicated the activity we were forming among
5 classes. The task was then to learn a classifier that could
predict between the 5 classes given the accelerometer data.
In order to make the code-writing efficient, we were able
to use the same Recurrent Neural Network architecture do
this classification task, except in the last layer, rather than
projecting down to just 2 classes, we were able to project to 5,
and make predictions using these.

Then, we took the data that we collected from our sur-
veyed users and ran it through the classifier to see what they
appeared to be doing when they submitted our survey.

5.2 Results and Evaluation of Success
5.2.1 Human vs. Not-Human
Figure 2 shows the results of training each of the seven models.
The first column shows the accuracy on the test set during
training. The second two columns show the false positive
(FP) and false negative (FN) rate during training. Human
examples are considered positive in our terminology, so a
false positive is a robot labelled as human and a false negative
is a human labelled as robot. The next five columns show the
accuracy of the model against previously unseen data of each
adversarial type. In the accuracy columns, the row with the
highest accuracy is highlighted. We observe that all of the
models perform incredibly poorly (worse than 40% accuracy)
on at least two of the five types of adversarial data. Therefore
in practice, it seems that the most successful model would
likely be an ensemble of two of the models trained such that
a user is only considered human if both models classify the
user data as human.

We propose two possible ensembles based on the client’s
preference for false positives versus false negatives. If a
client is especially concerned about false positive (allowing
robots through), then combining the Gauss model and the

mixed model gives at least 80% accuracy in all categories of
adversarial data. However, it also leads to a false negative
rate greater than 43% which might be unacceptable. However,
suppose that a website began collecting user motion data
before clicking the ”I am not a robot” button, in which case
the client could verify a user as soon as they click the button
or even before they do. In this case, a false negative would
be no worse than presenting a traditional CAPTCHA to the
users, and to the users who were verified successfully, they
could bypass a traditional CAPTCHA.

If instead a client is not as concerned about letting through
robots so long as most human users are allowed through, then
combining the HMM model and the mixed + HMM model
gives accuracy of at least 93% for all adversarial data types
except for the Gaussian noise data (although as we discuss
below, our replay-prevention techniques in part guard against
Gaussian noise). However, this model has a comparatively
high false positive rate (at least 26%).

Overall, we observe that models typically perform poorly
against types of adversarial data different than those they were
trained on. To some extent, it may be possible to combat this
by using more training data (both positive and negative) than
we were able to collect and train on, or by trying to exhaus-
tively guess all the types of non-human data an adversary may
send. However, a fundamental limitation of our approach is
that it creates a sort of ”arms race” between the creator of the
CAPTCHA server and an adversary. This is a typical problem
faced by the creators of CAPTCHA-like systems.

5.2.2 Preventing Replay Attacks
We enabled the binning systems described in section 4.4 with
500 bins. This number was chosen based on evaluating how
many legitimate human inputs were blocked as replays due
to this scheme. Choosing 500 bins caused 77 out of 548 (ap-
prox 14%) to be blocked. Figure 3 summarizes the results of
using the binning scheme to try to detect adversarial replays
on a survey deployed with the mixed model described in sec-
tion 5.1.1. The primary attack we wish to prevent using the
binning scheme is taking legitimate human data and adding a
small amount of zero-centered noise to the data. This threat is
well-represented by the 0-centered Gaussian noise data and
we observe that the binning system improves accuracy on
Gaussian noise data by over five times. It is not effective at
preventing other sorts of adversarial data. The binning sys-

Accelerating Good (and Evil): Using Accelerometer Data to Catch Spam (and Spy on People) — 9/10

tem in combination with either of the two ensemble schemes
proposed above helps to provide more robust coverage.

Figure 3. Accuracy improvements on 1000 adversarial
samples due to our binning technique.

Note that if the server maintains a complete log of all of
the binning hashes it receives, it will always prevent exact
replay attacks. However, we observed above that the sys-
tem also leads to denying a significant number of legitimate
users as replay attackers. Therefore, there is a trade-off in
implementation in choosing how many hashes to keep or how
long to keep hashes, again depending on the user’s tolerance
for denying legitimate users as opposed to admitting replay
attackers.

5.2.3 Human Activity
Next, we trained the second type of classifier on the data that
had activities labeled. Then, we tested the accuracy of this
model on a held-out test set, and got 76% accuracy on that
data set. This means this classifier was able to predict the vast
majority of the test data correctly, despite being trained on
nothing more than the raw accelerometer data that we did not
filter or engineer in any way.

Furthermore, we looked at the distributions of errors, and
found that approximately 3/4 of the errors occurred in cases
where a walking sample was incorrectly classified as in a car
or on the stairs. We attribute this to the fact that walking
shares many accelerometer-measured properties with these
other tasks. We are confident that having a much larger dataset
(ours was around 200 samples), as a large technology company
may have, would substantially improve the performance on
this task.

Lastly, we ran this trained model on the data that we col-
lected from on survey, which did not include any annotations,
and we used that to generate a set of predictions about what
our surveyed individuals were doing:

Task Number Predicted
walking 43
sitting 86
table 19
stairs 6
car 59

Table 1. Predicted action of Surveyers

The larger than expected number of students in a car is
consistent with our earlier statement that this classifier tended
to misclassify walking samples as car samples. Note that a
model trained with more data would likely perform much

better at this task, as it would be able to distinguish between
tasks with greater granularity.

6. Conclusions and Future Work
6.1 Comparison to current reCAPTCHA
In the Related Work section, we discussed how parts of the
current reCAPTCHA model could be beat with 70% accuracy.
Our results show that combining the Gauss Model and the
Mixed Model has a less than 20% error rate at every attack
vector we tried. However, it has a high false negative rate
(that is, many legitimate users are classified as suspect). As
we discussed earlier, this is not a substantial problem, as
a false negative just means that another reCAPTCHA test
must be used. Furthermore, this technique is much more
usable than the current reCAPTCHA on mobile, which would
simply default to asking the user the image-based prompt.
The majority of users, based on our data, would be able to get
approved without any additional image-based task. In fact, the
web site could completely hide the ”I’m not a robot” button
and validate the agent invisibly, similar to what Google’s
upcoming version of reCAPTCHA purports to do.

6.2 Privacy Discussion
This should present some serious privacy implications. Note
that all of this motion data can be collected without permis-
sion requests from our users. All of it is accessible through
well-known JavaScript functions in both Google Chrome and
iOS Safari. A server with more computing capacity and data
collection capability could quickly and clandestinely collect
hundreds of thousands of samples (potentially labeled by
cross-referencing user activities with their usage of other ap-
plications like Google Maps Navigation) which can be used to
train highly-accuracy classifiers that determine what users are
doing. The fact that a remote user can determine what a user is
doing with high probability without any permissions request
poses privacy concerns, and we believe it would be prudent
for Google to clarify whether they will use such data sources
as a component in their upcoming invisible reCAPTCHA.

Broadly speaking, any company that is claiming to cre-
ate a motion-based CAPTCHA system as we have described
could be masquerading intentions to collect large amounts of
motion data to get more information about user behavior. We
are not claiming that Google wishes to do this, but because
Google’s profit model is based on understanding user activity
and targeting advertisements accordingly, Google should clar-
ify its intentions and capabilities when developing a system
that could use accelerometer data.

6.3 Future Work
There are several avenues for future work that we and others
can take on. For one, recurrent neural networks generally
require large amounts of data to train effectively, and so get-
ting a large dataset of motion data from accelerometers, along
with annotated data about human actions would go a long way
towards creating an effective system for classifying behaviors.

Accelerating Good (and Evil): Using Accelerometer Data to Catch Spam (and Spy on People) — 10/10

Furthermore, the nature of CAPTCHA systems is funda-
mentally adversarial, where cunning enemies develop increas-
ingly unique ways to beat the CAPTCHA model, and the
designers of the CAPTCHA have to update the models to ac-
count for those techniques. In line with that, we identified the
Hidden Markov Model (HMM) as a simple, effective model at
getting through the model we presented, and thus a deployed
version of this model must be trained to be resistant to such
generated data, perhaps by generating a very large dataset of
HMM data.

Lastly, given the ease with which developers can incorpo-
rate reCAPTCHA into their websites, and the fact that Google
is moving to make it invisible from users altogether, there
should be significant analysis of the privacy implications of
any such technology, particularly if users are not asked for
permission to use accelerometer data, as is currently the case.
We have shown that, at the very least, even a small amount
of training data can train a model with sufficient accuracy
to guess, with high probability, what broad class of actions
a user is doing. With thousands or millions (or billions) of
training samples, it is likely that an organization can extend
this capability to gain much more nuanced information, which
can present serious risks that should be better understood and
potentially mitigated.

References
[1] L. Von Ahn, M. Blum, N. J. Hopper, and J. Langford,

“Captcha: Using hard ai problems for security,” in Inter-
national Conference on the Theory and Applications of
Cryptographic Techniques, pp. 294–311, Springer, 2003.

[2] I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and
V. Shet, “Multi-digit number recognition from street
view imagery using deep convolutional neural networks,”
arXiv preprint arXiv:1312.6082, 2013.

[3] S. Sivakorn, I. Polakis, and A. D. Keromytis, “I am
robot:(deep) learning to break semantic image captchas,”
in 2016 IEEE European Symposium on Security and Pri-
vacy (EuroS&P), pp. 388–403, IEEE, 2016.

[4] A. Greenberg, “Google can now tell you’re not a robot
with just one click.” https://www.wired.com/
2014/12/google-one-click-recaptcha,
2014.

[5] J. H. J. S. Jeremy Elson, John (JD) Douceur, “Asirra: A
captcha that exploits interest-aligned manual image cate-
gorization,” in Proceedings of 14th ACM Conference on
Computer and Communications Security (CCS), Associa-
tion for Computing Machinery, Inc., October 2007.

[6] M. Chew and J. D. Tygar, “Image recognition captchas,”
in International Conference on Information Security,
pp. 268–279, Springer, 2004.

[7] R. Gossweiler, M. Kamvar, and S. Baluja, “What’s up
captcha?: a captcha based on image orientation,” in Pro-

ceedings of the 18th international conference on World
wide web, pp. 841–850, ACM, 2009.

[8] P. Golle, “Machine learning attacks against the asirra
captcha,” in Proceedings of 15th ACM Conference on
Computer and Communications Security (CCS), Associa-
tion for Computing Machinery, Inc., October 2008.

[9] R. Gafni and I. Nagar, “The effect of captcha on user expe-
rience among users with and without learning disabilities,”
in 11th Chais Conference for the Study of Innovation and
Learning Technologies: Learning in the Technological
Era.

[10] C. A. Fidas, A. G. Voyiatzis, and N. M. Avouris, “On
the necessity of user-friendly captcha,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems, pp. 2623–2626, ACM, 2011.

[11] V. Shet, “Are you a robot? introduc-
ing “no captcha recaptcha”.” https://
security.googleblog.com/2014/12/
are-you-robot-introducing-no-captcha.
html.

[12] Google, “recaptcha: Tough on bots, easy on hu-
mans.” https://www.youtube.com/watch?v=
GeibaHfYW9o.

[13] K. Kuspa and T. Pratkanis, “Classification of mobile de-
vice accelerometer data for unique activity identification,”
2013.

[14] M. D. Network, “Mdn: Devicemotionevent.”
https://developer.mozilla.org/en-US/
docs/Web/API/DeviceMotionEvent.

[15] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus, “Intriguing properties of
neural networks,” arXiv preprint arXiv:1312.6199, 2013.

https://www.wired.com/2014/12/google-one-click-recaptcha
https://www.wired.com/2014/12/google-one-click-recaptcha
https://security.googleblog.com/2014/12/are-you-robot-introducing-no-captcha.html
https://security.googleblog.com/2014/12/are-you-robot-introducing-no-captcha.html
https://security.googleblog.com/2014/12/are-you-robot-introducing-no-captcha.html
https://security.googleblog.com/2014/12/are-you-robot-introducing-no-captcha.html
https://www.youtube.com/watch?v=GeibaHfYW9o
https://www.youtube.com/watch?v=GeibaHfYW9o
https://developer.mozilla.org/en-US/docs/Web/API/DeviceMotionEvent
https://developer.mozilla.org/en-US/docs/Web/API/DeviceMotionEvent

	Introduction
	Related Work
	CAPTCHAs and Attacks on CAPTCHAs
	Usability Limitations of CAPTCHAs
	Surveillance via Accelerometer Data

	Design of CAPTCHA Challenge
	 Threat Model
	High-Level Learning Framework
	 Collecting Human Examples
	 Surveying Users
	 Activity-specific Data

	Generating Adversarial Examples
	 Timestep Sampling
	 Difference Sampling
	 Random Noise
	 0-centered Gaussian Noise
	 Hidden Markov Model

	Design of CAPTCHA Server
	Client Key Management
	User Verification
	Integrating with a Client
	Security

	Evaluation
	 Evaluation Methods
	 Human vs Not-Human
	 Preventing Replay Attacks
	 Human Activity

	 Results and Evaluation of Success
	 Human vs. Not-Human
	Preventing Replay Attacks
	 Human Activity

	Conclusions and Future Work
	Comparison to current reCAPTCHA
	Privacy Discussion
	Future Work

	References

