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Abstract
Users of relational databases often have trouble constructing SQL
queries to perform their desired tasks. However, users are often
able to provide input-output examples that provide a partial spec-
ification for their desired outcome. Accordingly, prior work has
developed programming-by-example systems to help users craft
database SELECT queries. A natural and useful extension of this
technique is to automatically synthesize queries that modify data
(that is, UPDATE and DELETE queries), as even users who are profi-
cient in writing SELECT queries may struggle to write these modi-
fication queries.

In this paper, we present the first system for synthesizing SQL
data modification queries from input-output examples. Our key in-
sight is that it is possible to solve SQL data modification query
synthesis problems by issuing multiple, independent calls to an ex-
isting SELECT synthesizer, which we can treat as a black box. This
results in a simple synthesis algorithm that will benefit from future
advances in SELECT synthesis technology. We have implemented
our algorithm in a new tool called REAPER1 which can solve a va-
riety of interesting update problems in a few seconds.

1. Introduction
SQL is a widespread domain-specific language used to manipu-
late relational data. In a recent survey of developers conducted by
Stack Overflow, SQL was the second-most used programming lan-
guage among respondents, with over 51% of developers using SQL
[19]. SQL has significantly different syntax than popular general-
purpose programming languages and is primarily declarative rather
than procedural. SQL-specific concepts and idioms (for example,
joins, groupings, and nested queries) present a further barrier to
learning SQL. Moreover, even a user who is proficient in issuing
SQL SELECT queries may struggle to write correct UPDATE queries
if they wish to modify existing data. This can be seen by examin-
ing Stack Overflow questions tagged “sql-update”: users who ap-
pear competent in writing SELECT queries often provide either a
syntactically invalid UPDATE query that they are unsure how to fix
or just an example of a query that selects the “new” data they wish
to replace some existing data with.2 Further, experimenting with a
possibly incorrect UPDATE presents a risk of irreparably corrupting
data unlike testing out a SELECT query.

Though users may struggle to write SQL queries, they can
usually provide input-output (I/O) examples to specify their intent.
Recent work on programming-by-example (PBE) tools for SQL
query synthesis [22, 24] have attempted to ease the pain of writing
SQL SELECT queries. These systems solicit I/O examples from
users and return queries satisfying the examples so that users need

1 Our code can be found at https://github.com/ezig/Reaper
2 e.g. https://stackoverflow.com/questions/34554337/

not learn the complexities of writing SQL queries themselves.
We believe that this approach can be extended to helping users
construct UPDATE and DELETE queries, which previous work has
not addressed.

Our key insight is that we can treat an existing SQL SELECT
synthesis system as a black box and use it to implement an algo-
rithm for synthesizing UPDATE and DELETE queries from I/O exam-
ples. This approach has two distinct advantages: 1) implementing
or modifying our algorithm does not require a deep knowledge of
program synthesis techniques and 2) improvements to the quality
of the synthesizer are orthogonal to our work and should automati-
cally improve the quality of our results.

Based on this insight, we can decompose the UPDATE synthesis
problem into two independent steps. First, we use a SELECT syn-
thesizer to search for a predicate that correctly classifies the rows
in the table based on whether or not they should be updated (that
is, the WHERE... clause in an UPDATE query). Then, in the second
step, we search for terms in the SET clause that will assign the cor-
rect new values to the rows (again using a SELECT synthesizer).
The DELETE synthesis problem is a smaller version of this prob-
lem where we only need to learn a classifying predicate. On top of
this, we implement several heuristics for manipulating the inputs
to and outputs from the SELECT synthesizer which we have found
significantly improve the quality of the final synthesis output.

We have implemented our algorithm and instantiated it with
Scythe [22] as the underlying SELECT synthesizer in a PBE tool we
call REAPER. We have evaluated REAPER qualitatively and found
that it is able to solve a variety of interesting update problems in a
matter of seconds. To the best of our knowledge, REAPER is the
first PBE tool that supports synthesizing SQL data modification
queries.

To recap, our work makes the following contributions:

• We describe an algorithm that decomposes the problem of SQL
UPDATE and DELETE synthesis into multiple, independent calls
to a SELECT synthesizer, which we treat as a black box.

• We present heuristics which we use to improve the quality and
expressiveness of queries returned by a SELECT synthesizer.

• We implement our algorithm and heuristics as REAPER and
qualitatively demonstrate that it is useful for synthesizing cor-
rect, readable UPDATE and DELETE queries.

2. Overview
We begin with a high-level description of our algorithm, motivating
our approach through an illustrative example.

SQL Modification Queries. All synthesized UPDATE and DELETE
queries are of the form given in Figure 1. Non-standard features
such as multi-table modification queries (allowed in MySQL) and
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UPDATE t
SET s1, ..., sm
WHERE p

DELETE t
WHERE p

Figure 1. The grammar of synthesized SQL data modification
queries; t is a table name, the si are SET clauses, and p is a
predicate.

SET clause s := (col = e)
e := const | col | (SELECT . . . )

Figure 2. A SET clause is the assignment of a column to a constant
value, another column, or the result of a nested query.

use of the FROM clause in UPDATE queries (allowed in SQL Server)
are not supported. Although these restrictions limit expressiveness,
the queries we synthesize will be compatible with nearly all major
database management systems (DBMSs). As many DBMSs are in
common use [19], we believe such broad compatibility is impor-
tant.

Synthesizing an UPDATE query involves learning a number of
SET clauses (see Figure 2) and a predicate p in the WHERE clause
(we call this the classifier predicate). Synthesizing a DELETE query
involves learning just a classifier predicate p. DELETE synthesis is
thus a smaller problem than UPDATE synthesis. For clarity, this sec-
tion will largely focus on UPDATE synthesis. Section 2.4 discusses
how our approach extends immediately to synthesizing DELETE
queries.

Problem Statement. In the style of Wang et al. [22], we formal-
ize a user’s query as a 5-tuple (I, Tupdate, Tout,K,C), where:
I = {T1, . . . , Tn} is the set of input tables; Tupdate ∈ I is
the table to be updated; Tout is the desired state of Tupdate af-
ter the UPDATE query; K is a function from column names in
Tupdate to sets of constant values; and C is a set of constants
relevant to the classifier predicate. Conceptualizing a SQL data
modification query as a function from sets of tables to sets of ta-
bles, the objective is to synthesize a query q such that q(I) =
q({T1, . . . , Tupdate, . . . , Tn}) = {T1, . . . , Tout, . . . , Tn}, with
the constraint that all constant values used in q must have been
provided by the user. In particular, we require that all constants that
appear in the classifier predicate pmust be fromC and all constants
in a SET clause col = e must be from K(col).

Although the requirement that the user provide all constants
may initially seem burdensome, we believe it is reasonable and nec-
essary in our scenario for several reasons. First, our synthesizer is
designed for users who roughly know the semantics of the query
they want (e.g. “update salary for employees who have been at the
firm for > 10 years”) but do not how to express this query in SQL
syntax. It is thus realistic to expect that the user knows the special
values (e.g. ‘10 years’) relevant to their query. Second, in many
cases user-provided constants are necessary to resolve ambiguities
in small input-output examples. For instance, if the user provides a
two-row example in which a 13-year employee gets a raise but a 2-
year employee didn’t, the synthesizer has no way of knowing which
constant value between 2 and 13 years is the intended cutoff point.
Third, user-provided constants boost efficiency as the synthesizer
only has to enumerate over the structure of queries and does not
have to enumerate all possible constant values (which may be infi-
nite). Fourth, many complex and interesting SQL data modification
queries require little or no constants at all.

UPDATE COMPACT_DISCS
SET label_id = (SELECT CD_LABELS.label_id
FROM CD_LABELS
WHERE CD_LABELS.company = 'Sarabande')
WHERE COMPACT_DISCS.cd_id = 115.0

Figure 3. Our synthesizer’s solution for Example 1.

Example 1. We use a simple example from an introductory SQL
textbook [16] (Chapter 8, Exercise 6, modified for brevity) in this
section. The example consists of two input tables: TCD LABELS,
which lists record labels; and TCOMPACT DISCS, which lists compact
discs produced by these record labels. The scenario is as follows:
the user has just inserted a CD (‘Orlando’) into TCOMPACT DISCS but
made a data entry error, assigning the CD to Capitol Records in-
stead of Sarabande. The user would like to correct the error, and
wants to modify the incorrect label_id without first looking up
the correct label_id value for Sarabande. The user provides the
relevant cd_id (115) as a classifier predicate constant, and the
name of the correct record company (‘Sarabande’) as a constant
that may be useful in synthesizing the SET clause for the column
label_id.

Using the 5-tuple notation introduced above, the user’s query is
({TCD LABELS, TCOMPACT DISCS}, TCOMPACT DISCS, Tout,K, {115}),
where K(label id) = {’Sarabande’} and K = ∅ everywhere else.

TCD LABELS
label id company

834 Reprise
835 Capitol
836 Sarabande

TCOMPACT DISCS = Tupdate

cd id cd title label id
113 Blue 834
114 Fundamental 835
115 Orlando 835

Tout

cd id cd title label id
113 Blue 834
114 Fundamental 835
115 Orlando 836

Solution. Figure 3 shows the correct solution generated by our
synthesizer, which matches the textbook solution. The query up-
dates the row in TCOMPACT DISCS where cd_id = 115, setting the
label_id to Sarabande’s label_id using a nested query. Note
that the use of constant values in the generated query matches the
constraint described above.

2.1 Our Approach
There has been recent work [22, 24] on PBE tools for SQL query
synthesis. However, all of these research efforts have focused ex-
clusively on synthesizing SELECT queries. Our key insight is that
the problem of UPDATE and DELETE query synthesis can be de-
composed into smaller, independent subproblems that can each be
solved using a SELECT synthesizer:

1. Synthesizing the classifier predicate p.

2. Synthesizing each of the SET clauses si.

The following two sections justify the claim that these subproblems
are independent and sketch the necessary SELECT synthesizer calls.
We assume the SELECT synthesizer accepts queries of the form
(I, Tout, C), where I is again the set of input tables, Tout is the
desired output table from the SELECT query, and C is a set of
predicate constants. This matches the interface of Scythe [22], the
tool we extend in this paper.

2.2 Synthesizing the Classifier Predicate
Using a simple row-by-row comparison between Tupdate and Tout,
we can determine the set of rows in Tupdate that are modified by
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SELECT *
FROM COMPACT_DISCS
WHERE COMPACT_DISCS.cd_id = 115.0

Figure 4. The top result from the classifier predicate subproblem
call to the SELECT synthesizer, for Example 1.

the UPDATE query. We consider a row modified if one or more of
its fields is different between Tupdate and Tout. We assume that
there are no “coincidental non-updates”; that is, there are no rows
that were meant to satisfy the classifier predicate but for which the
“correct” SET clauses coincidentally act as an identity transforma-
tion. We view coincidental non-updates as an example quality and
user interaction issue orthogonal to the main contributions of this
paper.

Given the rows that are modified by the query, synthesizing the
WHERE clause that selects these rows for the update and synthesizing
the SET clauses that apply the correct transformation to these rows
are clearly two independent problems.

We conceptualize a SQL table as a multiset of rows and let
Tmodified ⊆ Tupdate and T ′

modified ⊆ Tout denote the modified
rows before and after (respectively) the UPDATE query executes. In
Example 1, these two tables both consist of a single row:

Tmodified ⊆ Tupdate

cd id cd title label id
115 Orlando 835

T ′
modified ⊆ Tout

cd id cd title label id
115 Orlando 836

We ask the SELECT synthesizer to produce a query whose result is
Tmodified, given the input tables I and the classifier predicate con-
stants C; in other words, we give the SELECT synthesizer the query
(I, Tmodified, C). We filter out results that are not of the form
SELECT * FROM T_update WHERE p, and then “lift” the classi-
fier predicate p from the top candidate returned by the SELECT syn-
thesizer and use it in our own result. Figure 4 shows the top candi-
date returned for the appropriate call for Example 1; the classifier
predicate we lift is highlighted in blue.

2.3 Synthesizing SET clauses
Under the SQL standard, columns referenced on the right-hand
side of a SET clause (either directly, or in a nested SELECT query)
are the columns before the larger UPDATE query takes place. The
query UPDATE t SET col1 = col2, col2 = col1, for exam-
ple, would swap the values in col1 and col2. SET clauses can thus
be synthesized not only independently of the classifier predicate but
also independently of one another.3

For each column col in the original table, we first check
whether all the values of col in T ′

modified are equal to a con-
stant value k ∈ K(col). If so, the SET clause is simply col = k.
If not, we then check whether the col column in T ′

modified is
equal to another column col2 in Tmodified, in which case the SET
clause is col = col2. If col2 is col, the SET clause is simply
the identity and we omit it in our synthesized query for brevity.
Otherwise, the right-hand side of the SET clause must be the result
of a nested SELECT query, and we ask the SELECT synthesizer for
that query by posing it the problem (I, πcol(T

′
modified),K(col)),

where πcol(T ′
modified) denotes the table consisting of just the col-

umn col in T ′
modified. For Example 1, the SET clause for columns

cd_id and cd_title is the identity, and since the single value of

3 In MySQL, the order of the SET clauses does matter—SET clauses are
evaluated one at a time and “generally” in left-to-right order [17], meaning
the swap query above would likely produce two identical columns. This
behavior is a significant departure from the standard and we therefore do
not support MySQL.

T ::= Table(schema, content) (Table)
schema ::= [c1 : τ1, . . . , cm : τm] (Schema)
content ::= [r1, . . . , rn] (Content)

r ::= [v1, . . . , vm] (Row)
τ ::= int | double | string (Type)
| date | time

Figure 5. The formalization of SQL tables, following Scythe [22].
c denotes a column name and v denotes a value.

label_id in T ′
modified does not equal any value in the single-row

Tmodified or any constant in K(label_id) = {115}, we must
make a call to the SELECT synthesizer. The resulting SET clause is
shown in Figure 3.

One may wonder why our algorithm uses C and K rather
than a single “bag” of constants. This choice is in part due to
the design of state-of-the-art SELECT synthesizers. Scythe [22], the
SELECT synthesizer we build on, for example ranks synthesized
queries based on whether or not they use all of the user-provided
constants. Passing every user-provided constant to the synthesis of
a single nested SET clause could result in a convoluted query that
attempted to use every constant and it is thus necessary to separate
the constants relevant to each individual SELECT synthesizer call.
We view this preference towards queries in which all user-provided
constants are used not as a quirk of Scythe but as a desirable
property for ranking algorithms in general, since queries that leave
constants unused intuitively are not fully capturing the user’s intent.
Separation of constants allows the user to more precisely specify
their input-output example and allows us to provide better results
as the SELECT synthesizer is passed only the appropriate constants.

2.4 Synthesizing DELETE Queries
So far our discussion has focused on UPDATE query synthe-
sis. The insights here are however immediately applicable to-
wards DELETE synthesis. For deletes, a user’s query is a 4-tuple
(I, Tdelete, Tout, C), where Tdelete ∈ I is the table whose rows
are being deleted. Note that no function K is needed here as only a
classifier predicate is being synthesized.

We find the rows Tmodified ⊆ Tdelete which are deleted in the
output, i.e. Tmodified = Tdelete − Tout. As before, we then pass
the query (I, Tmodified, C) to the SELECT synthesizer and lift the
result’s classifier predicate for our DELETE query.

3. SQL Language
Before turning to a complete treatment of our synthesis algorithm,
we briefly introduce the definition of SQL tables used in this paper
and the grammar of SQL data modification queries we are able to
synthesize, in Figures 5 and 6 respectively. We follow Wang et al.
[22] in both cases.

A table is a (schema, content) tuple, where schema asso-
ciates types with columns and content is a multiset of rows. Stan-
dard multiset binary operators such as = (equality), ⊆ (subset), ∪
(union), and \ (set difference) are defined to compare the content
of tables when the tables have equivalent schemas. These opera-
tors are undefined when the operands are two tables with different
schemas.

Thanks to the expressiveness of Scythe [22], the SELECT synthe-
sizer we extend for the implementation of our synthesis algorithm,
we are able to handle a large subset of the SQL language. The gram-
mar outlined in Figure 6 is straightforward; the only constructor
that requires some explanation is Aggr(~c, c′, α, i, p), which maps
to the SQL query SELECT ~c, c′ FROM i GROUP BY ~c Having p.
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q ::= Update(T,~s, p) (Queries)
| Delete(T, p)

s ::= c = v | c = c′ (SET clauses)
| c = Select(i, p)

i ::= T (Intermediates)
| Projection(~c, i)
| Dedup(i)
| Select(i, p)
| Join(i1, i2, p)
| Aggr(~c, c′, α, i, p)
| Union(i1, i2)

| LeftJoin(i1, i2,~c = ~c′)
| Rename(i, name,~c)

p ::= True | binop(v, v) | Exists i (Predicates)
| Is Null c | p And p | p Or p
| Not p

v ::= c | const | null (Values)
α ::= Max | Min | Avg | Count | Sum (Aggregators)
| Count-Distinct | Concat

binop ::= = | > | < | <= | >= | <> (Comparators)

Figure 6. Grammar of synthesized SQL queries, extended from
Scythe [22]. T ranges over tables, c ranges over column names,
const ranges over constant values, and name ranges over table
name strings. Vector notation is used to indicate sequences of one
or more elements, e.g. ~s denotes a sequence of one or more SET
clauses.

Note that neither our grammar for SET clauses nor Scythe’s
language of SELECTs has support for advanced SQL features like
arithmetic expressions, string manipulations, or date expressions.
This is not a fundamental limitation of our approach and these
features could be supported by integrating existing synthesis tools
[18].

4. Synthesis Algorithm
In this section we present our synthesis algorithm (Algorithm 1)
in full. Again we focus on the UPDATE case for clarity. Given
an input-output example (I, Tupdate, Tout,K,C) and access to a
SELECTSYNTHESIS procedure which takes queries of the form
(I ′, T ′

out, C
′) and returns a ranked list of candidate queries, UP-

DATESYNTHESIS returns a single query q or null (if no solution
was found).

The algorithm begins with a check that the input-output exam-
ple is valid (lines 2-7): the schema of Tupdate and Tout must match
and both tables must have the same number of rows. If this check
fails there does not exist a solution to the input-output example, as
UPDATE queries cannot alter a table schema or delete/insert rows.

If the check passes, we compute the table containing the rows
in Tupdate that will be modified by the UPDATE query (Tmodified).
From this, we also compute the corresponding rows in Tout

(T ′
modified). This is done on lines 8-10 and is valid as Tupdate

and Tout are guaranteed to have the same schema at this point.
The classifier predicate p is then synthesized (line 11) as well as
the SET clauses ~s (line 12); if either synthesis subroutine fails, we
return null.

The synthesis of the classifier predicate (Algorithm 2) closely
matches the overview given in Section 2. A call is made to the
SELECT synthesizer for queries consistent with the input-output ex-
ample (I, Tmodified, C). Of the candidates returned by the SELECT

Algorithm 1 Synthesizing UPDATE Queries
1: function UPDATESYNTHESIS(I, Tupdate, Tout,K,C)
2: if Tupdate.schema 6= Tout.schema then
3: return null
4: end if
5: if |Tupdate.content| 6= |Tout.content| then
6: return null
7: end if

8: Tmodified ← Tupdate \ Tout

9: Tunmodified ← Tupdate \ Tmodified

10: T ′
modified ← Tout \ Tunmodified

11: p← SYNTHESIZEWHERE(I, Tupdate, Tmodified, C)
12: ~s← SYNTHESIZESETS(I, Tmodified, T

′
modified,K)

13: if (p = null) ∨ (~s = [ ]) then
14: return null
15: end if

16: return update(Tupdate, ~s, p)
17: end function

synthesizer, the classifier predicate of the top candidate matching
the form (SELECT * FROM T_update WHERE p) is returned.

Algorithm 2 Synthesizing the Classifier Predicate
1: function SYNTHESIZEWHERE(I, T, Tmodified, C)
2: candidates← SELECTSYNTHESIS(I, Tmodified, C)

3: for all candidate in candidates do
4: Select(i, p)← candidate
5: if i = T then
6: return candidate
7: end if
8: end for

9: return null
10: end function

To synthesize the SET clauses (Algorithm 3), we iterate over
each column of T ′

modified as described in Section 2. σi(col) is
shorthand for the ith value in column col. Note that if the algorithm
is unable to find a constant value, a column in Tmodified, or a
nested SELECT query that accounts for the values of a column in
T ′
modified, synthesis fails (lines 14-16).

4.1 Query Correlation
One subtlety of SQL UPDATE semantics which we have not consid-
ered so far is how a nested query in a SET clause is evaluated. If
a SET clause sets a column col equal to a nested query, all rows
that satisfy the classifier predicate will have the value of col set
to the first result of the nested query. As we show in the following
example, this behavior is often undesirable.

Example 2. Suppose there are two input tables: TMAIN and
TCACHED, and that the cache table has been invalidated.4 For each
row in TCACHED, we want to set its value equal to that in the row
with the same id in TMAIN.

4 This example is adapted from the question posed in
https://stackoverflow.com/questions/12394506/
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Algorithm 3 Synthesizing SET Clauses
1: function SYNTHESIZESETS(I, T, T ′,K)
2: ~s← [ ]

3: for all col in T ′ do
4: if ∃k ∈ K(col) s.t. ∀i, σi(col) = k then
5: ~s.append(col = k)
6: else if ∃col2 ∈ T s.t. ∀i, σi(col) = σi(col2) then
7: ~s.append(col = col2)
8: else
9: candidates = SELECTSYNTHESIS(I, T ′, C)

10: if |T ′.content| > 1 then
11: candidates.map(CORRELATEQUERY)
12: candidates.filter(x => x 6= null)
13: end if

14: if candidates = [ ] then
15: return [ ]
16: end if

17: ~s.append(col = candidates.top)
18: end if
19: end for

20: return ~s
21: end function

UPDATE CACHED
SET id = (

SELECT id
FROM MAIN
JOIN CACHED
WHERE CACHED.id = MAIN.id

)

Figure 7. Possible incorrect solution to the problem in Example 2.

Formally, the problem is (I, TCACHED, Tout,K, ∅), where I =
{TMAIN, TCACHED} and K(col) = ∅ for all columns col. The tables
are given below:

TMAIN
id value

031938 AAA
930111 BBB
000391 CCC
129078 DDD

TCACHED = Tupdate

id value
031938 NULL
129078 NULL

Tout

id value
031938 AAA
129078 DDD

A user might erroneously produce the query shown in Figure 7.
This will result in the following incorrect result (the incorrect tuple
is shown in red):

Tout

id value
031938 AAA
129078 AAA

since the nested query used in the SET clause evaluates to:

UPDATE CACHED
SET id = (

SELECT id
FROM MAIN
WHERE CACHED.id = MAIN.id

);

Figure 8. A correct solution to the problem in Example 2 using a
correlated subquery. This is also the actual result returned by our
system.

value
AAA
DDD

and only the first result (bolded) will be used to update the values
in Tupdate.

Solution. Instead, to get the intended result, we must ensure that the
rows in the nested query are correctly matched up with the rows
in Tupdate. This can be achieved through the use of a correlated
subquery [15], as demonstrated in Figure 8. The nested query is
correlated because the column CACHED.id in the WHERE clause
(emphasized in blue) refers to a column in the table being updated
in the outer query.

The nested queries synthesized by Algorithm 3 on line 9 are
unaware of the UPDATE context in which they will be used (since
the underlying SELECT synthesizer does not know anything about
UPDATE synthesis) and can thus lead to errors like the one shown
in Example 2. To remedy this, we generalize the solution we em-
ployed in that example to transform nested queries into correlated
queries. Algorithm 4 shows the implementation of the CORRE-
LATEQUERY function, which is applied to each nested query candi-
date on line 11 in the SET clause synthesis algorithm (Algorithm 3).

Algorithm 4 Correlating Candidate Queries
1: function CORRELATEQUERY(candidateQ, Tupdate)
2: Projection(~c, q)← candidateQ
3: Join(i1, i2, p)← q

4: if GETCOLUMNNAMES(p) ∩ Tupdate.schema 6= ∅ then
5: if i1 = Tupdate then
6: return Projection(~c, Select(i2, p))
7: else if i2 = Tupdate then
8: return Projection(~c, Select(i1, p))
9: end if

10: end if

11: return null
12: end function

Intuitively, this approach checks if the query is a projection on
top of a JOIN on Tupdate (such as the query shown in Figure 7).
If the structure matching fails on line 3, we return null. Next,
on line 4 we check to make sure that the predicate in the JOIN
references some column in Tupdate so that the resulting query will
be a correlated subquery. Finally, we check to make sure that one
of the tables in the JOIN was Tupdate and return a selection over
the table that is not Tupdate using the predicate from the original
JOIN.

Note that this approach is almost certainly not complete: there
are likely many queries that could be transformed into correlated
queries that are not of this exact form. However, we claim that
this algorithm is sound in that the original query will evaluate to
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the same relation that the transformed query evaluate to in the
context of the UPDATE query.5 The synthesis may fail to find a
solution for a particular input, but it will not make errors of the
sort demonstrated in Figure 7. We have found qualitatively that this
algorithm is able to correlate the sort of nested queries commonly
found in UPDATE queries. However, it could be extended to consider
other sorts of nested queries. There is not much prior work to draw
on for this sort of transformation because it is really a form of query
deoptimization.6

4.2 Implementation
We implement our algorithm in a system called REAPER,7 written
in Java. The system is implemented on top of the SELECT synthe-
sizer Scythe [22], although we treat Scythe as a black box to un-
derscore that our algorithm could be implemented on top of any
existing SELECT synthesizer satisfying the same interface. All told,
the implementation is less than a thousand lines of code added to
Scythe, including the extensions discussed in the following sec-
tion. Scythe itself, by contrast, is over 10,000 lines of Java code.
The brevity of REAPER illustrates the value of our approach: by
leveraging existing SELECT synthesis tools, support for data modi-
fication queries can be achieved for a fraction of the work it would
take to build a new system from scratch.

The performance of an implementation of our algorithm is al-
most entirely dependent on the underlying SELECT synthesizer and
is thus orthogonal to the contributions of this paper. We did find,
however, that REAPER was able to return solutions within a very
reasonable amount of time (a few seconds). As the synthesis of the
classifier predicate and the synthesis of each of the SET clauses is
independent, there is an opportunity for parallelism to improve per-
formance in future work.

5. Extensions
Lastly, we consider extensions to our basic algorithm, which we
have found qualitatively improve the expressiveness and readabil-
ity of synthesized queries. Because we treat the underlying SELECT
synthesizer as a black box, these extensions operate either by ma-
nipulating the input to the black box synthesizer or transforming
the output.

5.1 Example Transformation
The hand-constructed input-output examples received by a SQL
query synthesizer will often have two key characteristics. First, the
input and output tables will be small (perhaps a few rows). Second,
the values in the tables will draw from a small range (say 1-10 for
integer columns). While these concise examples are easy to read
and write, they have an unfortunate side effect: as the following
example will demonstrate, there will be many coincidences in the

5 Note that based on line 10 of Algorithm 3 that candidate queries that result
in 1 row, 1 column relations are not transformed into correlated queries.
This is sound considering that the “top one” semantics for evaluating the
nested query will produce the intended result in this case. In fact, some
common types of UPDATEs are elegantly expressed using an uncorrelated
nested query (see Figure 3). However, there is no guarantee that when the
query is evaluated against the full database from which the I/O example
was drawn that it will still result in a 1×1 relation. This means that queries
returned by our system could fail when used in a more general context.
Future work could ask users to mark certain columns as having schema
uniqueness constraints and then conservatively reason about when a query
is guaranteed to evaluate to a 1 × 1 relation for any tables satisfying the
given schema.
6 A naive DBMS may evaluate a correlated subquery once for each row in
the outer relation, whereas a nested query only needs to be evaluated once.
7 REAPER = Scythe + Tuple lifecycle management

tables that a synthesizer may capitalize on, leading to results that
vastly diverge from user intent.

Example 3. We use an example inspired by a Stack Overflow
question.8 The example consists of three input tables: TMATERIALS,
which lists materials; TPARTS, which lists parts; and TPART MATERIALS,
which lists which materials a part needs (p_id = 1, m_id = 1
means the part ‘sink’ requires the material ‘steel’). The scenario
is as follows: the user wants to update the qty field of TMATERIALS
such that it reflects the number of parts that use that material.

Formally, the problem is (I, TMATERIALS, Tout,K, ∅), where I =
{TMATERIALS, TPARTS, TPART MATERIALS} and K(col) = ∅ for all col.
Note that no constants are needed for this example.

TMATERIALS = Tupdate

m id name qty
1 Steel 0
2 Wood 0
3 Gold 0

TPARTS
p id name

1 Sink
2 Chair
3 Ring

TPART MATERIALS
p id m id

1 1
2 1
2 2
3 3

Tout

m id name qty
1 Steel 2
2 Wood 1
3 Gold 1

There are many coincidences in this example. The values in
the qty column of Tout (which we want to synthesize a nested
SELECT query to produce) are a count of the number of rows
in TPART MATERIALS with a particular m_id. But the values in
this column—1 and 2—are also m_ids of materials (‘Steel’ and
‘Wood’) and p_ids of parts (‘Sink’ and ‘Chair’). As a result, when
this query is passed to our base implementation, the result tries to
perform a very complicated UPDATE such that the qty column is
set to the p_ids 1 and 2.

Solution. To produce relevant results while still allowing the
user to write small, simple input-output examples, we develop
coincidence-removing example transformations. The idea is sim-
ple: allow users to add a small annotation ([id]) to table columns,
and then map the values in annotated columns to random integers
disjoint from the set of user-provided constants. Annotations can
specify a transformation group (e.g. [id1]); all columns in a par-
ticular group will be transformed by the same function and it is
guaranteed that the transformed values in a group will be disjoint
from the transformed values of every other group. Transformation
groups are necessary for examples with tables with foreign keys.
The annotation is [id] because id columns are the most com-
mon example of columns where the specific values don’t usually
matter so long as they are consistently used. Our transformation
preserves equality and order, which is useful if a JOIN with or
MIN/MAX over an annotated column is necessary. For Example 3, the
user might specify MATERIALS.m_id, PART_MATERIALS.m_id as
transformation group 1 and PARTS.p_id, PART_MATERIALS.p_-
id as transformation group 2. A transformed version of Example 3
following these annotations is shown below:

TMATERIALS = Tupdate

m id name qty
3056 Steel 0

42214 Wood 0
60649 Gold 0

TPARTS
p id name
7126 Sink

23178 Chair
91016 Ring

TPART MATERIALS
p id m id
7126 3056

23178 3056
23178 42214
91016 60649

8 https://stackoverflow.com/questions/3949592/
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UPDATE MATERIALS
SET qty = (SELECT T1.count_p_id
FROM
(SELECT

PART_MATERIALS.m_id,
COUNT(PART_MATERIALS.p_id) AS count_p_id

FROM
PART_MATERIALS

GROUP BY
PART_MATERIALS.p_id) AS T1

WHERE T1.m_id = MATERIALS.m_id)

Figure 9. Our synthesizer’s solution for the transformed version of
Example 3.

SELECT T2.created_id
FROM
(SELECT TABLE1.id, TABLE1.subst_id,
TABLE1.created_id, T1.id AS id1,
T1.serial_id, T1.branch_id

FROM TABLE1 JOIN
TABLE2 As T1) AS T2

WHERE T2.subst_id = T2.serial_id

Figure 10. Scythe output for a simple JOIN.

Tout

m id name qty
3056 Steel 2

42214 Wood 1
60649 Gold 1

The result when this transformed example is passed to REAPER is
shown in Figure 9 and precisely matches the user’s intent. There
is one caveat to note regarding the use of example transformation:
as we transform only the column values but not any of the user-
provided constants (again because the [id] should only be applied
to columns where the specific values truly do not matter except for
their equality and order), it is possible that the transformed exam-
ple contains no solutions even if there was a solution to the untrans-
formed example. Moreover, it is conceivable that the transformed
example itself introduces coincidences and thus results in a query
that is invalid over the original example. Because this transforma-
tion is therefore unsound in general, REAPER evaluates the syn-
thesized query resulting from the transformed example on the un-
transformed input tables and verifies that it is indeed a solution to
the user’s problem; if it is not or there are no solutions to the trans-
formed example, REAPER tries instead to synthesize a solution for
the untransformed example as usual.

5.2 Rename Elimination
In developing REAPER, we found that the SELECT results returned
from Scythe were often difficult to read due to renaming of inter-
mediate results. Figure 10 provides a prototypical example of this
problem, which we encountered in synthesizing a SET clause in-
volving a nested query. If one examines the query closely and traces
the renames through the nested query layers, it becomes clear that
the query is equivalent to the simple equijoin shown in Figure 11.

Naturally, we prefer the query in Figure 11 to the one in Fig-
ure 10, since it is easier to read and therefore validate. Further, sim-
pler queries are also more amenable to the transformations that our
algorithm and its extensions perform (for example, it is obvious
how to transform the query in Figure 11 into a correlated subquery
that would be suitable for updating TABLE1 or TABLE2).

SELECT TABLE1.created_id
FROM
TABLE1 JOIN

TABLE2
WHERE TABLE1.subst_id = TABLE2.serial_id

Figure 11. Semantically equivalent version of the query in Fig-
ure 10 after applying rename elimination.

UPDATE CUSTOMERS
SET firstname = 'John'
WHERE
CUSTOMERS.id =

(SELECT
MAX(CUSTOMERS.id) AS max_id
FROM CUSTOMERS)

Figure 12. An UPDATE query that has a nested SELECT in the
WHERE clause.

To this end, we implement a set of heuristics for safely removing
unneeded renames. These are applied to the results of the SELECT
synthesizer as well as to the results of other query transformations
(as the transformations may result in more renames being remov-
able than before). We briefly describe the situations in which we
remove renames and provide (without proof) an intuitive explana-
tion for their validity:

• Within a JOIN over named tables: the clause TABLE2 as T1
in Figure 11 provides a good example of this case. Since it is
possible to unambiguously refer to the columns of this JOIN
using the fully qualified column name (e.g. TABLE2.serial_-
id), the rename is not required. The restriction that the JOIN
term be a named table is necessary: in the case of a nested
SELECT, the rename may be needed to refer to the columns
generated by the intermediate result.

• SELECT immediately below a top-level SELECT : the clause ...
AS t2 in Figure 10 is a good example of this. The columns of
this SELECT can be unambiguously referred to by their column
names in the top-level SELECT, since we know that the nested
result is not used higher up in any JOINs or other operations
that might necessitate the rename.

We have found qualitatively that these heuristics are enough to re-
sult in readable queries and facilitate other desired transformations.
Further, the implementation of the tests is straightforward. If one
desired to eliminate even more renames, a more nuanced approach
that takes into account which columns of intermediate results are
used in later parts of the query may be possible.

5.3 Nested Query Lifting
As Figure 6 shows, our base implementation of REAPER does not
support classifier predicates p with nested queries, meaning we
would be unable to produce queries like that in Figure 12. This
restriction is simply because Scythe does not support such nested
queries in WHERE clauses either. For SELECT synthesis this limita-
tion is irrelevant as the same predicates can be expressed using a
JOIN as shown in Figure 13. The same can be done for UPDATE
queries in some DBMSs (e.g. MySQL) but is non-standard. Sup-
porting these sorts of queries in general is important for the practi-
cal utility of our tool; when one considers DELETE queries in par-
ticular, which only have a classifier predicate, almost all interesting
queries which might prompt a user to employ a synthesizer will
have a nested query in the WHERE clause.
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SELECT T1.max_id, CUSTOMERS.firstname
FROM

(SELECT
MAX(T2.id) AS max_id
FROM CUSTOMERS AS T2) AS T1 JOIN
CUSTOMERS

WHERE T1.max_id = CUSTOMERS.id

Figure 13. A SELECT query that achieves an equivalent WHERE
clause to the query in Figure 12 using a JOIN.

SELECT *
FROM CUSTOMERS
WHERE

CUSTOMERS.id =
(SELECT
MAX(CUSTOMERS.id) AS max_id
FROM CUSTOMERS)

Figure 14. The SELECT query from Figure 13 after “nested query
lifting.”

To support nested queries in the classifier predicate for a limited
number of cases, we use a technique we call “nested query lifting.”
The idea is as follows: if the classifier predicate in the original
SELECT query (as in Figure 13) is a comparison between a column
in Tupdate (CUSTOMERS.id) and a column in an intermediate result
table generated in the FROM clause (T1.max_id), we can “lift” the
query that produces the column of the intermediate result and use
it in the predicate. Intuitively, this technique is thus analogous to
inlining the definition of a local variable. The restrictions are that
the outermost layer of the FROM clause in the original SELECT must
be a join between Tupdate and the intermediate result table (T1
JOIN CUSTOMERS) and that the result of the nested query we are
“lifting” is a 1-row, 1-column relation (else this technique is not
well-founded).9

In the formal SQL grammar presented in Section 6, nested query
lifting transforms queries of the form

Join(Tupdate, i, binop(Tupdate.col1, i.col2))

to queries of the form

Select( Tupdate,
binop(Tupdate.col1, σ1(Projection(col2, i))))

the latter of which passes the SELECT * FROM T_update WHERE
p structure requirement imposed by the classifier predicate synthe-
sis subroutine. The result of nested query lifting on the query in
Figure 13 (after rename elimination) is shown in Figure 14.

6. Evaluation
Before we implemented out REAPER, we picked 5 examples
of UPDATE/DELETE queries from a SQL textbook [16]. We also
searched through posts and Stack Overflow and picked 10 inter-
esting and complex examples that we felt were representative of
user questions. The Stack Overflow questions were generally more
sophisticated than the textbook examples. In total, we used 15 to-
tal examples (10 UPDATES and 5 DELETES) to evaluate REAPER
and found that it was able to solve 10/15 correctly (corresponding

9 This approach suffers from the same query generalization problem as our
query correlation algorithm (see note 5).

to 8/10 UPDATES, 2/5 DELETES, 4/5 textbook questions, and 6/10
Stack Overflow questions).10 For all examples tested, REAPER re-
turned either a correct answer or a failure within a few seconds.

We attribute the three failed DELETE cases to limitations of
Scythe. For two examples, the expected solutions involved WHERE
IN... clauses in the DELETE queries, which Scythe does not sup-
port. This could be remedied by extending Scythe with support for
this support of query, or implementing a transformation like nested
query lifting (Section 5.3) that allows us to synthesis this sort of
classifier predicate without modifying the SELECT synthesizer. The
final case involves a simple disjunctive WHERE clause which Scythe
failed to synthesize.

The two failed UPDATE cases are more interesting. In both cases,
the intended solution involved SET clauses with reasonably sim-
ple nested queries. However, Scythe returned complicated queries
which could not obviously be transformed into correlated nested
queries for which our correlation procedure was inadequate (Al-
gorithm 4). On the one hand, one might say that Scythe ought to
have synthesized simpler queries with a top level JOIN that could
have been correlated successfully. To this end, one could attempt to
improve on SELECT synthesis or ranking algorithms to output sim-
pler queries that can more easily be reasoned about. On the other
hand, one might say that REAPER ought to be able to handle a more
robust subset of the possible SELECT queries that the black box syn-
thesis procedure might return. To address this, one could attempt to
write more sophisticated transformations or correlation procedures.
In either case, these cases highlight the boundary point between our
algorithm and the black box select synthesizer as a likely cause for
limitations in REAPER.

Overall, we are encouraged by the qualitative performance of
REAPER, especially considering the simplicity of its implementa-
tion. We have found that, in practice, it is able to solve a variety
of SQL synthesis problems that are representative of the sort of
queries users struggle with. Future work could evaluate the practi-
cality of creating a SELECT synthesizer that is aware of the seman-
tics of SQL UPDATEs.

7. Related Work
Programming by Example. Our work is inspired by PBE systems,
wherein users specify input/output examples and the system syn-
thesizes a program compatible with those examples. Gulwani [10]
provides a comprehensive overview of program synthesis and PBE
techniques. PBE has been used to synthesize programs in such di-
verse domains as graphics [3, 9], data manipulation tasks [8, 18],
and data structure transformations [23].

Scythe [22], SQLSynthesizer [24], and Query By Output [20]
are existing PBE systems for SQL SELECT synthesis. We built
our system on top of Scythe because it uses an algorithm based
on the notion of abstract queries which is more efficient than
previous approaches based on decision trees. Scythe also supports a
richer set of SQL operations such as UNION, EXISTS, and free-form
subquery nesting which were impractical in earlier systems due to
scalability limitations. To the best of our knowledge, no previous
PBE system has addressed synthesizing SQL data modification
queries.

Relational Database Usability. Researchers have long recog-
nized the need to address the usability limitations of relational
databases [5]. Approaches to database usability have typically been
in one of two areas: designing new query interfaces or considering
context and personalization [12]. Our work, like other SQL PBE
systems, provides an example-based query interface on top of SQL.
Other proposed interfaces have included visual [2] or form-based

10 The examples are at https://github.com/ezig/Reaper/tree/master/data/reaper
under “textbook” and “stackoverflow”.
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[4] interfaces as well as keyword-based [1] and natural language
[14] approaches.

Usability approaches addressing context and personalization in-
herit from a long line of work on cooperative answering [6] which
uses principles of conversational cooperation [7] studied in linguis-
tics to enhance responses to queries. Koutrika and Ioannidis [13]
create a user preference model for determining what query results
a user will be interested in. Ioannidis and Viglas [11] propose con-
versational querying in which query results depend on the context
of previous queries in the session.

8. Conclusion & Research Outlook
In this paper, we presented an algorithm for synthesizing SQL
data modification queries on top of any existing SQL SELECT
query synthesizer. The key idea is that UPDATE and DELETE query
synthesis can be decomposed into several small problems, each
of which can be solved by a SELECT synthesizer. We present a
number of extensions to our basic algorithm which improve the
expressiveness and readability of queries. We implement our ideas
in REAPER, which can synthesize a wide range of UPDATE and
DELETE queries in just a few seconds.

There are a number of directions for further study. First and
foremost, there is much potential for improvement in the usability
of REAPER. Our tool, for instance, currently only has a command-
line interface; creating a rich, web-based user interface in the style
of Wang et al. [21] may be a worthwhile investment. A web-based
user interface could also let us display multiple candidates for the
classifier predicate and each SET clause, as well as perhaps allow
the user to mark coincidental non-updates and preview the UPDATE
or DELETE query on their actual database. A second direction is to
investigate the synthesis of sequences of data modification queries.
That is, the user may provide us with an input-output example and
we return a series of queries that take the database from the input
state to the output state. Third, it is worth investigating whether
access to richer schema information can automate annotation of
input-output examples. In this paper, we treated a schema as just
a mapping from column names to value types; knowledge of for-
eign key constraints for instance may help us infer transformation
groups. Fourth, although there are sets of input-output examples
that are used as benchmarks for SELECT synthesis, no such data sets
exist for UPDATE or DELETE synthesis. Constructing such a bench-
mark would more rigorously evaluate the effectiveness of REAPER
and future SQL data modification query synthesizers. Finally, as
mentioned in Section 6, it is not a foregone conclusion that treating
a SELECT synthesizer as a black box is the best approach to SQL
data modification query synthesis. It is worth considering the po-
tential advantages of creating a SQL SELECT system that is aware
of UPDATE semantics.
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