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Abstract

Database-backed applications ofிen run queries with more authority than necessary. Since pro-

grams can access more data than they legitimately need, ஺ாaws in security checks at the application

level can enable malicious or buggy code to view or modify data in violation of intended access con-

trol policies. Although database management systems provide tools for controlling access to data,

these tools are not well-suited for modern web applications which ofிen have many users and con-

sist of many diஸferent sofிware components. First, databases are unaware of application users, and

creating a new database user for each application user is impractical for applications with many users.

Second, diஸferent components of the same application require diஸferent levels of database access,

which would require creating diஸferent database users for diஸferent sofிware components. Thus, it is

diஸஹ஭cult to properly limit the authority an application has when executing queries.

I propose ShillDB, a language for writing secure, database-backed applications. ShillDB en-

ables reasoning about database access at the language level through capabilities, which limit what

database tables a program can access, and contracts, which limit what operations a program can

perform on those tables. ShillDB contracts are expressed as part of function interfaces, making it

easy to specify diஸferent access control policies for diஸferent components of an application. These

contracts act as executable security documentation for consumers of ShillDB programs and are

enforced by the language runtime. Further, ShillDB provides database access control guarantees

independent of the security mechanisms of the underlying database management system.

I have implemented a prototype of ShillDB and have used it to implement the backend for a

lending library reservation system. My experience indicates that ShillDB is a practical language

for enforcing database access control policies in realistic, multi-user applications and has reasonable

performance overhead.
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1
Introduction

Database-backed applications ofிen require dynamic, ஹ஭ne-grained access control in order to secure

sensitive information. For example, a multi-user web application such as Facebook must restrict

the information that it displays based on the currently logged-in user. These access control policies

are ofிen enforced at runtime by specially written security code which sits between the database

management system (DBMS) and the rest of the application code. This security code may validate

user inputs, ஹ஭lter out rows returned by queries, or be embedded in the SQL queries the application

issues. However, such security code can be diஸஹ஭cult to write correctly and must be modiஹ஭ed any time

security policies change. Any bugs in the security policy code can result in unauthorized disclosure

of information: in 2015, a security researcher found that it was possible to access other users’ private

photos on Facebook due to an access control bug [1]. These sorts of access control vulnerabilities

are both serious and common: OWASP ranks broken access control as one of the ten most critical

security risks to web applications [3].
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students
id name email gpa
1 Mike Birbiglia birbigs@college.edu 2.5
2 Tig Notaro tnotaro@college.edu 3.9
3 Patton Oswalt poswalt@college.edu 3.4

advising
student advisor
1 Jerome Seinfeld
2 Jerome Seinfeld
3 Joan Rivers

Figure 1.1: Schema and example data used by a student directory application.

Applications are typically run with more privilege than needed, which contributes to the preva-

lence of broken access control. In the most extreme cases, this can take the form of running a server

as root or accessing a database as an administrator. If a malicious user is able to ஹ஭nd vulnerabilities

in the application’s input validation or access control checks, she can execute commands with the

authority of these privileged user credentials. To limit the possible damage from such an exploit,

good practice dictates that a program ought to execute with just the authority it needs to perform its

functionality. This concept is known as the Principle of Least Privilege (POLP) [33].

Unfortunately, many systems do not adequately support running programs with least privilege.

Moore et al. [27] identify two primary obstacles to following the POLP in most systems. First, it

is diஸஹ஭cult to determine what authority a piece of sofிware legitimately needs to execute. Second,

mechanisms to limit authority are diஸஹ஭cult to use due to being too coarse-grained or requiring sig-

niஹ஭cant changes to sofிware. These problems hold true for running a database-backed application

with least privilege. As an example, consider a student directory application for use by professors at

a university. Suppose the application is backed by data from two database tables: a table students

that stores student records and a table advising that maps student ids to the name of the student’s

advisor (Figure 1.1). It is ஹ஭ne for any professor to view non-sensitive information about students (for

example, their name and email), but suppose that university policy requires that a professor should

only be able to view grade-point averages for her own advisees.

According to the POLP, the student directory application should not even be able to access in-

formation that the logged-in user should not view according to policy. However, running the ap-

plication with least privilege presents several diஸஹ஭culties. The ஹ஭rst diஸஹ஭culty is determining what
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privilege the application needs to perform its legitimate function. In practice, this would require

reading through all of the code and examining the database queries the programmakes. Once one

has inferred the authority that the directory application needs, it may or may not be possible to cor-

rectly limit the application’s database access, as some DBMSs (e.g. MySQL) do not provide the sort

of tuple-level access control mechanisms necessary to express the access control policy described.

Further, implementing user-based access control at the DBMS level remains cumbersome because

each application-level user would need to map to a distinct database user.* Additionally, diஸferent

components of the application require diஸferent levels of database access for their legitimate purpose.

For example, a component of the directory application that lets a professor send an email to all her

advisees has no legitimate need to access students grades. Certain application components may also

be less trusted than others (perhaps they were written by an untrusted third-party), and one may

reasonably want to run these components with less privilege than the rest of the application. Giving

components diஸferent privilege levels using DBMS-level access control would require creating even

more database users. Finally, specifying application-speciஹ஭c access control policies in the DBMS sep-

arates the security policy from the program, making it diஸஹ஭cult to understand the application’s access

control policies just by reading the application source code.

There is therefore a need for a more pragmatic approach to expressing and enforcing database ac-

cess control policies in multi-user applications consisting of many diஸferent components. To address

this need, I propose ShillDB: a language with support for declarative security policies that describe

and limit a program’s database access. Consumers of ShillDB programs can examine the programs’

security policies to ascertain the authority with which the program will run. In this way, the policies

serve as executable security documentation.

At the core of ShillDB is CapQL, a new database interface I have developed that operates

on view capabilitiॽ. These capabilities are unforgeable tokens that represent access to a view of a

database table (or tables) and confer the authority to perform database operations on that view

(such as fetching or updating data). Much as database views have been used at the DBMS level to

*While this may be possible for a student directory application at a small university, it is not practical to
create a new database user for every person who uses Facebook, for example.
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1 (provide
2 [display-students
3 (->i/join
4 ([X (user)
5 #:post (lambda (v)
6 (where v (sqlformat "student = id AND advisor = $1" user)))
7 #:with (view/c +where +fetch)])
8 ([user string?])
9 [(view/c +join +fetch) #:groups X]
10 [(view/c +join
11 [+fetch #:restrict (lambda (v)
12 (select v "name, email"))]) #:groups X]
13 any)])
14

15 (define (display-students user v-advising v-students)
16 #| Application code goes here... |#)

Figure 1.2: ShillDB contract for a student directory application. The language runtimewill enforce the specified ac-

cess control policy regardless of the implementation of the display-students function, and the policy is cleanly

separated from the rest of the application code.

implement content-based access control [4], view capabilities provide ShillDB programs with re-

stricted windows into database tables. In ShillDB, view capabilities can be received only as initial

program arguments (or derived from existing capabilities), providing a basis for reasoning about a

program’s database access. Further, ShillDB enables programmers to write contracts on functions

which state and restrict how functions can use capabilities they receives. Thus, it is possible to de-

duce the authority a ShillDB program will have at runtime just by examining what capabilities are

passed in and what contracts will be applied to the capabilities.

Figure 1.2 shows a possible ShillDB contract for the student directory application described

above. The contract is a security speciஹ஭cation for the function display-students deஹ஭ned on lines

15-16. The function takes three arguments: the name of the currently logged-in user (user), a view

of the advising table (v-advising), and a view of the students table (v-students). The provide

form (lines 1-13) takes a function and a contract and exports the function with the given contract

applied. The contract for display-students (lines 3-13) speciஹ஭es a contract on the arguments and
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the return value: usermust be a string (line 8), the two view arguments are restricted using view

contracts (lines 9-12), and the function can return any value (line 13).

ShillDB’s view/c form can be used to specify contracts on view capabilities. A contract on a

view consists of a list of privilegॽ. Privileges specify what operations can be performed on a view:

for example, line 9 speciஹ஭es that v-advising can be joined with other views (+join) and that

the view’s underlying data can be fetched (+fetch). Privileges can havemodifiers to provide ஹ஭ner-

grained policies: lines 11-12 specify that the +fetch privilege for v-students can only be used to

fetch the name and email columns.

ShillDB contracts can also specify join groups which restrict how view capabilities can be joined

together. Lines 4-7 deஹ஭ne a join group Xwhich restricts that if two views in the group are joined to-

gether, the join must be an equijoin on the student and id columns and the resulting view must

be restricted to just the logged-in user’s advisees (lines 5-6). The result of the join derives an un-

modiஹ஭ed +fetch privilege (line 7). The contracts on the two view arguments (v-advising and

v-students) specify that the views are in the join group X (lines 9 and 12). The contract is deஹ஭ned

using the ->i/join contract combinator which can be used to deஹ஭ne function contracts that involve

join groups where the group’s deஹ஭nition depends on the value of a function argument (in this case,

user).

This contract both documents the privilege that the directory application needs to run and pro-

vides guarantees about what database access the program has, regardless of the implementation

of the display-students function. In particular, users are restricted in which students’ GPAs

they can view because the only way to receive a +fetch privilege to view the gpa column in the

v-students view is by joining it with v-advising and restricting the resulting view to just the

logged-in user’s advisees. Further, since none of the view contracts specify +update, +delete, or

+insert privileges, there is no way for the application to modify the underlying data in the views.

Finally, observe that the contract is cleanly separated from the implementation of the application,

making it easy to read or modify the contract without understanding or changing the implementa-

tion details.
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ShillDB oஸfers language features for reasoning about and restricting programs’ access to databases.

Speciஹ஭cally, ShillDB uses a new, capability-based interface for accessing databases and provides

contracts for restricting the use of database capabilities. These features make it possible to run

database-backed applications while following the POLP without needing to use DBMS-level se-

curity tools.

The rest of this thesis is structured as follows. Chapter 2 provides necessary background on be-

havioral contracts, capability-based security, and using contracts to restrict the use of capabilities.

Chapter 3 introduces a capability-based API for accessing relational databases. Chapter 4 presents

the design and implementation of ShillDB. Chapter 5 reports on the usability and performance

overhead of ShillDB. Chapter 6 examines related work. Chapter 7 concludes and proposes direc-

tions for future work.
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2
Background and Prior Work

This chapter covers background knowledge necessary to understand the contribution of this the-

sis. Section 2.1 introduces higher-order behavioral contracts with an emphasis on their use in the

Racket programming language. Section 2.2 overviews capability-based security and capability safety.

Section 2.3 illustrates how behavioral contracts and capabilities can be used together to express and

enforce security policies.

2.1 Behavioral Contracts: Motivation and Introduction

Consider a Racket [15] function that removes a substring from a string (Figure 2.1). The function

takes three arguments: a string (s), an index into the string (start), and the length (len) of the

substring to remove. Informally, the behavior of the function is that it should return a new string

that is the same as input string, except that the substring starting at index start of length len has

been removed:

7



(define (string-excise s start len)
(string-append (substring s 0 start)

(substring s (+ start len) (string-length s))))

Figure 2.1: ARacket function for removing a portion of a string. This simple implementation does not enforcemany

aspects of the function’s specification (e.g. argument types).

(: string-excise (-> String Integer Integer String))
(define (string-excise s start len)

(string-append (substring s 0 start)
(substring s (+ start len) (string-length s))))

Figure 2.2: string-excise function from Figure 2.1 written in Typed Racket with a type annotation. This imple-

mentation will reject obviously incorrect programs that pass in function arguments with the wrong types.

> (string-excise "Contracts are no fun!" 13 3)
"Contracts are fun!"

Implicit in the informal speciஹ஭cation of the function are several invariants. Most clearly, the data

types of each argument and of the return value are speciஹ஭ed: the ஹ஭rst argument must be a string, the

second two arguments must be integers, and the function must return a string. A static type system

can enforce this part of the speciஹ஭cation and statically reject certain obviously wrong programs (e.g.

programs that reverse the argument order). This is easily possible using Typed Racket [40], a dialect

of Racket that has support for function type annotations and static type checking (Figure 2.2).

Consider, however, a less obvious invariant of string-excise: the excised substring should not

extend past the end of the input string (that is, (+ start len)must be less than the length of the

string). Traditional static type systems such as those found in C, Java, ML, or the current release of

Typed Racket* are not expressive enough to write this constraint as part the function’s type signa-

ture. Since semantic properties of programs cannot be decided statically in general, programming

languages that support dependent types (types deஹ஭ned in terms of a value) or static veriஹ஭cation of

program properties ofிen require programmers to write proof annotations (e.g. Microsofி’s Dafny

[18]) or even full proofs (e.g. Idris [2] or Coq [17]). Thus, there is a tradeoஸf between a type system’s
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expressiveness and its usability.

Even if this invariant on the function’s arguments cannot be written as part of the type signature,

it is still necessary to handle invalid input more gracefully than the function currently does. Calling

the function with arguments that violate the invariant on the length of the excised substring results

in an error message that might be confusing to users of the function:

> (string-excise "Contracts are no fun!" 13 10)

substring: starting index is out of range
starting index: 23
valid range: [0, 21]
string: "Contracts are no fun!"

Someone calling string-excisemay not know (and should not need to know) that the func-

tion uses substring internally. In order to debug this error, a user may need look at the implemen-

tation details of string-excise. Ideally, string-excise should provide an error message at a

more appropriate level of abstraction. One way to accomplish this is to add special error-checking

code into the function body. The example in Figure 2.3 makes clear the downsides of this approach

to invariant checking: what began as a simple, three-line function is now a mess of error-handling

code that spans 18 lines. Further, the invariants on the arguments are still not obvious from the sig-

nature of the function. For this particular function, it is easy enough to read through the implemen-

tation and ஹ஭gure out the restrictions; however, in a more complex function, it could be diஸஹ஭cult for

a consumer of the function to determine the speciஹ஭cation, especially if error-checking code is inter-

spersed with the main function logic.

Behavioral contracts provide an alternative approach for expressing and enforcing speciஹ஭cations.

Behavioral contracts allow attaching pre- and post-conditions to function interfaces by writing code

in the same language as the implementation. These conditions are executable code and are checked

*Typed Racket recently added experimental support for type reஹ஭nement and dependent function types
that can statically check linear integer arithmetic properties with no user proof annotations [32]. This func-
tionality is suஸஹ஭cient for the simple invariants of the string-excise function, but not for speciஹ஭cations that
involve more complex properties.

9



(: string-excise (-> String Integer Integer String))
(define (string-excise s start len)
(unless (and (>= start 0) (< start (string-length s)))

(raise-arguments-error
'string-excise
"start index is out of range"
"start index" start
"valid range" (format "[0, ~a)" (string-length s))
"string" s))

(unless (and (>= len 0) (< len (- (string-length s) start)))
(raise-arguments-error
'string-excise
"excised substring extends past string end"
"start index" start
"substring length" len
"valid lengths" (format "[0, ~a)" (- (string-length s) start))
"string" s))

(string-append (substring s 0 start)
(substring s (+ start len) (string-length s))))

Figure 2.3: Checking invariants in string-excise. Understanding the specification of the function requires reading
through the error-handling code in its body.
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1 (define/contract (string-excise s start len)
2 (->i ([s string?]
3 [start (s) (and/c integer? (>=/c 0)
4 (</c (string-length s)))]
5 [len (s start) (and/c integer? (>=/c 0)
6 (<=/c (- (string-length s) start)))])
7 [result string?])
8 (string-append (substring s 0 start)
9 (substring s (+ start len) (string-length s))))

Figure 2.4: Using a contract to check invariants in string-excise. The function’s specification is concise and
cleanly separated from the implementation.

dynamically (that is, at runtime). Contracts thus let a user write complex speciஹ஭cations using famil-

iar syntax without requiring the speciஹ஭cations be statically-checkable.

Figure 2.4 shows an implementation of string-excise that uses Racket’s define/contract

form to attach a contract to the function. The contract itself is on lines 2-7. The contract provides

an executable speciஹ஭cation for the invariants that must hold for each argument and the result: the

ஹ஭rst argument must be a string (line 2), the second argument must be a valid index in the string

(lines 3-4), the last argument must be a valid length that does not cause the excised substring to ex-

tend past the end of the input string (lines 5-6), and the result must be a string (line 7).

->i is a contract combinator provided by Racket that takes in contracts on the function argu-

ments and the return value and returns a contract for the function. The combinator allows creating

dependent contracts wherein the contract on an argument depends on the values of one or more

other arguments. For example, the contract on start depends on the value of s (line 3) since the

valid indices into the string depend on the length of the string.

The contract on each of the arguments is a flat contract (a predicate function that can be checked

on a value immediately) built out of simple contract combinators. For example, >=/c (lines 3 and

5) is a contract combinator that takes in a number n and returns a contract requiring that a value be

≥ n. and/c (lines 3 and 5) is a contract combinator that takes any number of contracts and returns a

contract that requires a value to satisfy all of the given contracts.

11



With the contracted version of string-excise, providing the same invalid len argument re-

sults in a descriptive (albeit verbose) error message:

> (string-excise "Contracts are no fun!" 13 10)

string-excise: contract violation
expected: (and/c integer? not/c negative? (<=/c 8))
given: 10
in: the len argument of
(->i
([s string?
[start (s) (and/c integer? (>=/c 0) (</c (string-length s)))]
[len (s start) (and/c integer? (>=/c 0)

(<=/c (- (string-length s) start)))])
[result string?])

contract from: (function string-excise)
blaming: program
(assuming the contract is correct)
at: program:1.18

The contract-based version has three distinct advantages over the previous implementation. First,

the speciஹ஭cation is cleanly separated from the implementation. As a result, it is easy for a consumer

of the function to read and understand the speciஹ஭cation without looking at the implementation.

This separation also makes it easier to change either the speciஹ஭cation or the implementation without

modifying the other. Second, the contract automatically generates detailed error messages (similar to

those provided by the error-checking version in Figure 2.3) without additional work from the func-

tion author. Finally, the contract tracks blame, which means that it determines which component is

at fault if the contract is violated. In the example above, it is clear that the caller of string-excise

is to blame for supplying an invalid argument. One could also imagine a case in which the imple-

mentation of string-excisewas incorrect and the function broke its own contract by returning

something other than a string. Blame information can be useful for debugging, especially when a

program involves complex interactions between diஸferent sofிware components.

So far, this example has primarily considered ஺ாat contracts: contracts which can be checked imme-

diately when applied to a value. Suppose, however, that one wishes to attach a contract to a higher-
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(define/contract int-map f lst
(-> (-> integer? integer?) (listof integer?) (listof integer?))
(map f lst))

Figure 2.5: Attaching a contract to Racket’s map function. In general, this sort of higher-order contract cannot be

checked immediately when the function is applied.

order function like Racket’s map (which maps a function over a list). Figure 2.5 deஹ஭nes a function

int-mapwhich requires that the given function (f) maps integers to integers and that the input

list (lst) contains integers. The contract also ensures that the output list contains integers. -> is a

contract combinator that creates a simple function contract. The last argument to -> is the contract

on the function result, and the other arguments are the contracts on the function arguments. The

contract on the input list and the output list, (listof integer?), is a ஺ாat contract; it is easy to

check that a list contains only integers as the list ஺ாows into or out of the function.

But how can Racket check the contract on f? Racket cannot check a contract on a function sim-

ply by examining the body of a function because statically checking semantic properties of functions

is undecidable in general. Instead, Racket wraps the function in a proxy called amonitor that will

check the contract whenever f is applied and when it returns. The argument contract is checked

when a value ஺ாows into f and the result contract is checked on values that f returns (in this case,

both contracts are integer?). Thus, in the example below, the contract on int-map is not vio-

lated even though the provided function could return a non-integer value if a list with even elements

were passed as the lst argument:

> (int-map (lambda (x) (if (odd? x) (+ x 1) "not an integer")) '(1 3 5))
'(2 4 6)

The contract on int-map is a higher-order contract because it is a function contract deஹ஭ned in

terms of another function contract. In addition to complicating contract checking, higher-order

contracts also complicate assigning blame correctly. Dimoulas et al. deஹ஭ne blame as correct if a party

is only blamed when they control the ஺ாow of values into the contract check that failed [10]. Consid-
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ering this criterion, if the body of int-map passed a non-integer argument to f in violation of the

contract, one must blame the implementation of int-map since it controls the values passed into

f. On the other hand, if f returned a non-integer value in the body of int-map, the supplier of f

is to blame since they control the behavior of f. The contract monitor is responsible for correctly

tracking blame and providing errors in the case of contract violations.

Although contracts allow writing and enforcing rich speciஹ஭cations that could not be checked

statically, contracts are not unilaterally preferable to static types. First, since contracts are checked at

runtime, contracts incur an overhead during program execution (whereas types can be checked dur-

ing compilation and then erased from the executable code). Second, types provide static assurances

about program properties, while contracts provide no guarantees about what could go wrong, in-

stead only providing errors if something doॽ go wrong. In certain settings (e.g. aerospace or medical

sofிware), having static guarantees may be extremely important.

2.2 Capability-based Security

A capability is an unforgeable token that both designates a resource and conveys the authority to

perform some action(s) on that resource. In capability-based security, capabilities are the only means

to access certain resources (that is, a subject’s access to resources is determined based on what capa-

bilities they possess). It is useful to contrast capability-based security with the more familiar notion

of access control lists (ACLs). ACLs are familiar if one has run chmod or examined the output of ls

-l. In a system with ACLs, resources store information about what access diஸferent subjects have to

that resource. For example, an operating system associates with each ஹ஭le information about which

users can write to that ஹ஭le. When a subject wishes to access a resource, they refer to the resource by

some well-known name (such as a ஹ஭le path) and specify the action they wish to perform. This sort of

authority, wherein subjects can request to access resources by name, is called ambient authority.

Considering the diஸference between capabilities and ACLs (or ambient authority more generally)

helps make clear properties of capabilities that make them well-suited for supporting the POLP.

For example, when a program runs, it typically inherits the ambient authority of the invoking user,
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meaning that the program can modify almost any of the user’s ஹ஭les. If ஹ஭le system access were instead

mediated by capabilities, it would be possible to control what ஹ஭les a program could access by control-

ling what capabilities the program is given. Another useful property of capability-based systems is

that they allow for easy dynamic subject creation [25]. It is easy to create a new capability that con-

fers limited access to a resource, while in an ACL-based system, this would typically involve creating

new users or user groups. The unwieldiness of subject creation in ACL-based systems can lead to

coarse-grained permissions and failure to follow the POLP.

In object-capability languagॽ, every reference to an object is treated as a capability to access that

object. This means, for example, that object references cannot be forged, in contrast to languages

such as C++ where a program can forge a reference just by creating a pointer that contains an ob-

ject’s location in memory. In an object-capability language, there are a limited number of ways for an

object to acquire a reference to another object [23]:

1. Initial conditions: Two objects may reference each other before the program runs.

2. Parenthood: When an object creates a new object, the parent holds the only reference to the
child.

3. Endowment: An object can close over objects in the environment in which it is deஹ஭ned.

4. Introduction: An object can receive objects as arguments to its methods or as return values
frommethods it invokes.

These restrictions on how object references can be acquired are sometimes called capability-safety,

and thus object-capability languages are known as capability-safe languagॽ. Capability-safety pro-

vides a basis for reasoning about what capabilities diஸferent components of a programmay access.

In a capability-safe language, it is also possible for one component to grant another component re-

stricted access to a capability it possesses by wrapping the original capability in a proxy object before

sharing it. This proxy object intercepts any requests to the underlying capability and can choose

how to handle the request (for example, passing it on to the proxied capability or rejecting it). Using

proxy components, one can enforce complex access control policies like revocable access [25]. The
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(define carkey%
(class object%

(super-new)

(define/public (unlock-car)
#| Unlock the car ... |#)))

(send (new carkey%) unlock-car)

Figure 2.6: Implementation of a carkey class and an example of instantiating a car key object and invoking amethod.

next section demonstrates how these sorts of capability design patterns can be implemented using

behavioral contracts and the advantages of doing so.

2.3 Contracts and Capabilities for Security: An Example

Suppose one is implementing sofிware for Zapcar, a new car-sharing company that allows cus-

tomers to rent cars for short periods. One might implement access to the rental cars by controlling

access to car key capabilities. Figure 2.6 shows a Racket implementation of a simple carkey class†,

where a car key has a method unlock-carwhich will unlock the car to which the key refers. The

details of the unlock implementation and how car keys are initially created to refer to particular cars

are not important for this example.

Although users should be granted a car key capability at the start their rental, this capability must

be revocable so that users cannot keep accessing the car afிer their rental expires. This security policy

can be implemented using Redell’s “Caretaker” pattern, which uses a forwarding receiver object to

allow a capability to be revoked [31] (Figure 2.7)‡. makeCaretaker takes in a carkey object and

returns two values: a caretaker and a gatewhich both close over a mutable boolean, enabled?.
†Racket is not a capability-safe language (for example, Racket supports object serialization, which makes

it possible to obtain object references by reading from the ஹ஭le system), so it is not accurate to refer to Racket
objects as capabilities. This consideration is separate from the goal of demonstrating how to implement capa-
bility design patterns using contracts, and so examples are shown in Racket to focus on features of Racket’s
contract system.
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(define (makeCaretaker carkey)
(let* ([enabled? #t]

[caretaker (new (class object%
(init)
(super-new)
(define/public (unlock-car)
(if enabled?

(send carkey unlock-car)
(error "capability revoked")))))]

[gate (new (class object%
(init)
(super-new)
(define/public (enable)
(set! enabled? #t))

(define/public (disable)
(set! enabled? #f))))])

(values caretaker gate)))

Figure 2.7: Implementing the caretaker pattern for carkey instances using a proxy object. The caretaker can in-

tercept any requests to the underlying car key capability and forward or reject the request based on the value of

enabled.

When the caretaker object receives the unlock-carmethod, it will invoke the method on the

underlying car key object only if enabled? is true. The value of enabled? can be manipulated by

invoking the enable and disablemethods on the gate object:

(define ck (new carkey%))
(define-values (caretaker gate) (makeCaretaker ck))

> (send caretaker unlock-car)
> (send gate disable)
> (send caretaker unlock-car)

capability revoked

‡The code in Figure 2.7 and Figure 2.8 is adapted fromMoore’s [28] discussion of contracts on capabili-
ties.
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(define (makeCaretakerContract)
(let* ([enabled? #t]

[caretaker/c (object/c (unlock-car (->*m () #:pre enabled? void?)))]
[gate #| ... same as before ... |#])

(values caretaker/c gate)))

Figure 2.8: Implementing the caretaker pattern for carkey instances using a contract. The implementation of the

gate is the same as in Figure 2.7 and elided here for brevity.

To provide a car key with revocable access, a component can share the caretaker object rather than

the original carkey capability.

An alternative approach is to implement the pattern using Racket’s contract system (Figure 2.8).

The function makeCaretakerContract, when invoked, returns a contract and a gate. Instead of

creating a proxy object, this implementation returns a contract constructed using the object/c

combinator, which takes contracts on ஹ஭elds and methods and returns a contract that can be ap-

plied to an object. The ->*m combinator is a variant of -> specialized for methods and which allows

adding a boolean-valued pre-condition to a contract. When enabled? is true, the precondition in

the method contract will pass, but when enabled? is false, a contract violation will be signaled and

the method invocation will fail:

(define-values
(caretaker/c gate) (makeCaretakerContract))

(define/contract ck
caretaker/c
(new carkey))

> (send caretaker unlock-car)
> (send gate disable)
> (send caretaker unlock-car)

unlock-car: contract violation
#:pre condition
in: the unlock-car method in
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(object/c
(unlock-car (->*m () #:pre ... void?)))

contract from: (definition ck)
contract on: ck
blaming: program
(assuming the contract is correct)
at: program:1.17

The advantages of using the contract approach over creating a proxy object are twofold. First, be-

cause of the features of Racket’s contract system, the contract implementation is more concise while

also providing more detailed error messages, including blame information. Second, the contract can

be used enforce the security speciஹ஭cation at function interfacॽ rather than having to do so in func-

tion implementations. With the contract approach, one can easily write a contract on a function

that will make sure that the return value is wrapped in a caretaker:

(define-values
(caretaker/c gate) (makeCaretakerContract))

(define/contract (get-carkey)
#| ... some implementation |#)

(provide (contract-out [get-carkey (-> caretaker/c)]))

Here, the program exports a function get-carkey using provide and attaches a contract to

the exported function ensuring that the result of the function will be wrapped in a caretaker. In

this case, it is easy to look at the contract on get-carkey and verify that the security policy will be

enforced on carkey instances returned by the function. By contrast, when using the proxy object

approach, one would have to read through the implementation of get-carkey (and potentially

functions that get-carkey calls) to make sure that the return value is appropriately wrapped in a

caretaker.

In this example, using contracts both provided a convenient way to implement a common capa-

bility design pattern and pushed the work of enforcing security policies from the implementation
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of a function to its interface. Chapter 4 discusses how ShillDB uses contracts on capabilities to

express and enforce database access control policies.
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3
CapQL: A Capability-based Database

Interface

Running database-backed applications with least privilege requires designing a database interface

that makes it easy to reason about what tables (and what rows and columns of those tables) a pro-

gram can access. Typical SQL-based interfaces make this sort of reasoning diஸஹ஭cult for two primary

reasons. First, queries can refer directly to any tables that the user executing the query has access to,

making it diஸஹ஭cult to know what tables and rows a program could access without reading through

every query the programmight issue. Second, queries ofிen con஺ாate diஸferent operations into one

SELECT statement: a single statement may performmany operations like joining tables, selecting

rows, and aggregating data. A SQL-based interface therefore does not enable writing ஹ஭ne-grained

security policies using the same ontology that the queries use.

An interface designed for running database-backed applications with least privilege should make
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students
id name email gpa
1 Mike Birbiglia birbigs@college.edu 2.5
2 Tig Notaro tnotaro@college.edu 3.9
3 Patton Oswalt poswalt@college.edu 3.4

advising
student advisor
1 Jerome Seinfeld
2 Jerome Seinfeld
3 Joan Rivers

Figure 3.1: Schema and example data for a student directory application (reproduced from Figure 1.1).

it possible both to limit what portions of database tables a programmay access (e.g. only rows with

id greater than 10) and to restrict what operations a programmay perform on those tables (e.g. reads

but not writes). Basing an interface on capabilities is an attractive starting point because capabilities

make it easy to limit the authority of a computation. This means that one can understand what

database access a program has just by examining what capabilities the program can access.

This chapter presents CapQL, a capability-based database interface where capabilities are used

to represent database views, a common DBMS abstraction for stored queries. CapQL provides op-

erations for deriving new view capabilities from existing capabilities (e.g. projecting a view) and

for fetching or manipulating a view capability’s underlying data (e.g. updating the rows in a view).

Chapter 4 then shows how ShillDB’s capability-safety makes it possible to use CapQL to write

secure database-backed applications.

The rest of this chapter is organized as follows. Section 3.1 provides additional background on

database views and their applications to access control. Section 3.2 overviews the design goals for

CapQL. Section 3.3 presents the operations provided by CapQL. Finally, section 3.4 describes the

implementation of CapQL.

3.1 Database Views for Access Control

A view is an abstraction used in DBMSs that represents a stored query. Views are a type of virtual

table, meaning views can be queried by database users just like regular tables, but they do not have

physical storage backing them. Using the student directory schema presented previously (repro-

duced in Figure 3.1 for convenience), a view that only contains information about Prof. Seinfeld’s
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SELECT name
FROM jerrys_students
WHERE gpa < 3.0;

(a) A query over a view before the view definition is expanded.

SELECT name
FROM (SELECT name, email, gpa

FROM students, advising
WHERE student = id and advisor = "Jerome Seinfeld")

WHERE gpa < 3.0;

(b) The same query after the view definition is expanded.

Figure 3.2: A query over a view is evaluated by expanding the view definitions. The resulting query is unnecessarily

complex, but the DBMS can optimize the query.

students can be deஹ஭ned by:

CREATE VIEW jerrys_students AS
SELECT name, email, gpa
FROM students, advising
WHERE student = id and advisor = "Jerome Seinfeld";

When a user queries a view, the DBMS substitutes the view deஹ஭nition into the query (Figure 3.2).

Most DBMSs allow creating views with a WITH CHECK OPTION clause. This option prevents

rows from being inserted into the view if they do not satisfy the view’s WHERE clause and prevents

updates that would cause a row in the view to no longer satisfy the WHERE clause. In eஸfect, these

conditions prevent inserting rows that fall outside of the view or updating rows in the view in a way

that causes them to leave the view. When run on the data in Figure 3.1, the following example fails

because the update would cause the entry for Mike Birbiglia to leave the low_gpas view:

CREATE VIEW low_gpas AS
SELECT *
FROM students
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WHERE gpa < 3.0
WITH CHECK OPTION

/* Inflate everyone's grade to an A- ... */
> UPDATE low_gpas

SET gpa = 3.7;

ERROR: CHECK OPTION failed 'low_gpas'

Most DBMSs support using views for content-based access control [4]. Content-based access con-

trol decides access to data based on the content of the data. Access control policies based on content

are natural in a relational database because the data is highly structured. A simple content-based

access control policy could be denying a user access to database rows if the id of the row is less than

5. If users cannot access a particular database table except through a view, the view’s deஹ஭nition can

enforce content-based access by specifying what subset of the table users can access. Views typically

can specify what privileges users have on them, similar to the permissions that can be granted on a

regular database table (e.g. granting read access but not inserts, deletes, or updates). Using views for

content-based access control also enables expressing policies using the same language as queries.

CapQL lifிs the notion of views to the language level, where views capabilities are ஹ஭rst-class values

representing access to a subset of a database. Programmers can invoke operations on view capabili-

ties to derive new views or to access data. CapQL treats all views as though they were created with a

WITH CHECK OPTION clause.*

3.2 Design Goals

CapQL aims to meet the following four goals:

1. Queries can only be written in terms of operations on view capabilities (that is, they cannot
reference table names directly).

*There is no fundamental reason not to provide the option to create a view without this constraint. How-
ever, I ஹ஭nd inserting a row into a view and not being able to retrieve it to be unintuitive. Requiring that all
views have a CHECK OPTION constraint also makes it easier to reason about a program’s database access by
removing a potential parameter.
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2. CapQL clearly separates various database operations (e.g. selecting, updating, joining). In
particular, this means specifying a view should be distinct from fetching the view’s underlying
data.

3. View capabilities are ஹ஭rst-class values that can be passed around and from which new views
can be derived.

4. CapQL is compatible with commodity DBMSs.

Goals 1-3 facilitate reasoning about the authority of database-based applications that use CapQL.

Goal 1 makes it possible to limit what tables and rows a program can access by restricting what ca-

pabilities the program can access. Goal 2 enables restricting what operations can be performed on a

view capability using the same ontology that consumers of the capability use to access the underly-

ing database. Goal 3 makes it possible to pass view capabilities to programs and to restrict existing

capabilities (e.g. using a WHERE clause). Goal 4 acknowledges that in order for a new interface to be

useful in practice, it must support a variety of DBMSs. A recent survey of developers found that

MySQL, SQL Server, SQLite, PostgreSQL, and Oracle were each used by at least 15% of respon-

dents [9].

3.3 The CapQL Interface

This section presents the CapQL operations for creating and manipulating view capabilities and

their correspondence to familiar SQL operations. Note that all operations (except for view creation)

take views as arguments and do not make it possible to refer to database tables by name. This design

feature of CapQLmakes it possible to limit what database tuples a program can view or manipu-

late by limiting access to capabilities and provides the basis for reasoning about database access in

ShillDB programs (see Chapter 4)

A new view of a single database table can be created be supplying the name of the database and

the name of the table:

(define students (make-view "directory.db" "students"))
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The resulting view corresponds to selecting all of the data in the given table, so students corre-

sponds to the query:

SELECT *
FROM students

Note, however, that unlike a SQL SELECT statement, CapQL does not execute the query cor-

responding to the view until fetch is invoked on the view (see Section 3.3.2). If the underlying

DBMS supports users, then make-view can also be supplied the user credentials that to use when

performing queries on the database.

3.3.1 Deriving views from existing views

Four primitive operations are provided for deriving new views from existing views: where (which

corresponds to selection), select (which corresponds to projection)†, join, and aggregate

(which is like select but allows for aggregations).

The behavior of where, select, and join operations maps closely to the behavior of the cor-

responding keywords in SQL. The where operation takes a view and a WHERE clause and returns a

new view that has been restricted using the given WHERE clause. The view deஹ஭ned as:

(define w (where students "gpa < 3.0"))

corresponds to the query:

SELECT *
FROM students
WHERE gpa < 3.0

†These names may be confusing to programming language specialists familiar with the terms select and
project in the context of relational algebra. However, I believe they are intuitive to SQL users who think of
selection in terms of the WHERE keyword and projection in terms of the SELECT keyword.
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Likewise, select takes a view and a list of columns and returns a new view that contains the

speciஹ஭ed subset of columns from the original view. As in SQL SELECT statements, the columns

need not be simple column names but can instead be expressions containing columns. For example:

(define s (select students "name, gpa > 3.0"))

corresponds to the SQL query:

SELECT name, gpa > 3.0
FROM students

join takes two views and, optionally, a WHERE clause to restrict the resulting view afிer the join.

Without a WHERE clause, the join will be a full cross-join. To join the students and advising

table on student id, one could write:

(define students (make-view "directory.db" "students"))
(define advising (make-view "directory.db" "advising"))

(define j (join students advising "id = student"))

corresponding to the SQL query:

SELECT *
FROM students
JOIN advising
WHERE id = students;

Note that supplying a WHERE clause as an argument to join is semantically equivalent to apply-

ing a where operation with the same clause afிer the join; however for the purposes of writing secu-

rity policies on join operations, it is useful to be able to consider the WHERE clause when determining

if the join is allowed (see the discussion of join contracts in Chapter 4).

27



The aggregate operation does not correspond to a single SQL keyword but instead encapsu-

lates features used when performing aggregation queries. The operation takes a view and requires

a list of column names which can contain aggregation operations, unlike the argument to select.

Optionally, aggregate takes GROUP BY or HAVING clauses as keyword arguments.‡ For example,

to calculate the number of students advised by each professor who advises at least ஹ஭ve students, one

could write:

(define agg (aggregate students "advisor, COUNT(*)"
#:groupby "advisor"
#:having "COUNT(*) > 5"))

corresponding to the SQL query:

SELECT advisor, COUNT(*)
FROM students
GROUP BY advisor
HAVING COUNT(*) > 5

From an access control perspective, it is useful to distinguish between select and aggregate.

Chapter 4 demonstrates that writing contracts involving the aggregate operation allows security

policies that only permit a program to see aggregate data.

3.3.2 Retrieving data in a view

As mentioned, specifying a view and bringing the data in that view into memory are distinct opera-

tions. Given a particular view, the fetch operation actually executes the corresponding query and

fetches results. Executing the following returns the data in the view represented as a list of rows:

‡Restricting a view with a HAVING clause is provided as part of the aggregate operation rather than as its
own operation because in SQL, HAVING clauses are only semantically valid when combined with a GROUP BY
clause.
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> (fetch
(select
(where
(make-view "directory.db" "students")
"gpa < 3.0")

"name, email"))

'(("name", "email")
("Mike Birbiglia", "birbigs@college.edu"))

3.3.3 Modifying view data

CapQL provides insert, update and delete operations that correspond to their SQL counter-

parts.

The insert operation takes a view, a list of column names in the view (with no duplicates),

and a list of values for those columns. The operation then inserts the new row into the view. Any

columns in the view lefி oஸf the list must have default values deஹ஭ned in the schema. If the students

table has the id column set to automatically increment and provides a default GPA value, one could

write:

> (insert students "name, email" '("John Mulaney", "jmulaney@college.edu"))

to insert a new student into the table.

The update operation takes a view and a list of update statements (such as one would ஹ஭nd in

the SET clause of a SQL update query). Optionally, update can be provided a WHERE clause, which

restricts which rows will be updated. Note that this WHERE clause does not restrict the values that

the updated rows can have, unlike using where to restrict the view. The following update will fail

analogously to the CHECK OPTION example presented in Section 3.1:

> (update
(where students "gpa <= 2.5")
"gpa = 3.7")
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update: violated view constraint: gpa <= 2.5

While the following update will succeed:

> (update
students
"gpa = 3.7"
"gpa <= 2.5")

The delete operation deletes all of the rows in the view. For example, to remove all of the stu-

dents with poor grades from the table, one could write:

> (delete (where students "gpa <= 2.5"))

Operations that modify data are not necessarily well-deஹ஭ned for all views. For example, if a view

contains a non-simple column (such as gpa + id), it may be not be clear what an update to this

column would entail for the original view. CapQL does not attempt to provide a complex solu-

tion to this view update problem (although diஸferent solutions have been proposed, such as a new

bi-directional query language that allows interpreting view deஹ஭nitions as update policies [5]). In-

stead, conservative restrictions are used to determine what sort of views are insertable, updatable,

and deletable. These restrictions are similar to those found in commercial DBMSs [42, 22].§

Insertability is a property of a an entire view. A view is considered insertable unless:

• The view references the same base table columnmultiple times.

• The view is the result of a join.

• The view is missing a column in the base table which does not have a default value.

• The view contains derived columns, such as columns containing aggregation functions, lit-
eral values, or expressions over columns.

§Some DBMSs, such as MySQL, allow certain updates and insertions on views that are the result of some
types of joins. Here, for simplicity, any operations that modify the result of a join are prohibited.
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• The view contains a group by or having clause.

Updatability is a property of a column in a view, although certain operations (joins or aggrega-

tions) can cause all of the columns in a table to no longer be updatable. A column is updatable un-

less:

• The view is the result of a join.

• The column is a derived column.

• The view is the result of an aggregation.

Deletability is a property of an entire view. A view is deletable unless it is the result of a join or an

aggregation.

3.3.4 Limitations

CapQL does not support all features of SQL, such as diஸferent types of joins, union and intersection

operations, or nested queries in WHERE clauses. It also does not provide functionality for running a

sequence of queries in a transaction. These limitations are not fundamental but rather the result of

prioritizing the features most important to the larger goal of running database-backed applications

with least privilege.

3.4 Implementation

I have implemented a prototype of CapQL in Racket [15] on top of Racket’s standard database

library [8]. View capabilities are implemented as structs that store metadata (such as information

about the underlying table’s schema) along with an abstract, database-independent version of the

query that the view represents. Operations that produce new views from existing views work by

manipulating the abstract query representation. This abstract query is only concretized into SQL

syntax when an operation is invoked that requires issuing a database query (that is, fetch, update,
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delete, or insert). While most of the implementation is database-independent, some SQL syn-

tax is database-speciஹ஭c, and so operations that issue database queries must call out to diஸferent func-

tions depending on what DBMS stores the underlying data. CapQL currently supports SQLite3

[36], and supporting other DBMSs would be straightforward.

Executing SQL queries corresponding to CapQL views does not involve DBMS-level views. The

fetch and delete operations are easily implemented without DBMS-level views, as CapQL can

generate a query corresponding to the fully-expanded view deஹ஭nition without actually creating any

intermediate views at the DBMS level.

The update and insert operations do, however, need a mechanism for verifying the CHECK

OPTION constraints. These constraints are enforced by installing an insert or update triঃer [35]

on the underlying DBMS table, executing the query, and then removing the trigger. A trigger is a

database operation performed in response to a particular event, such as an insert query. The trigger

that CapQL installs for insert operations checks if the newly inserted row satisஹ஭es the WHERE

clause of the view on which the operation was invoked. If the row does not satisfy the WHERE clause,

the insert is aborted. Similarly, for an update, the installed trigger checks that each row that would

be updated satisஹ஭es the WHERE clause of the view. If any row would not satisfy the WHERE clause

when updated, the entire update is aborted and no rows are modiஹ஭ed. Leveraging existing trigger

functionality of DBMSs is preferable to validating updates and insertions in the implementation of

CapQL before issuing the query because this would require implementing a SQL interpreter and

performing unoptimized DBMS-like functionality in the language runtime. Further, using SQLite’s

temp trigger functionality [35] (which installs a trigger just for the current database connection),

the trigger-based approach works even if multiple applications with diஸferent access control policies

access the same tables concurrently. Other DBMSs besides SQLite3 have similar trigger mechanisms,

and so this approach is portable.

To provide early detection for invalid or malicious operations on a view, CapQL parses and vali-

dates any user-provided SQL expressions. The SQL parser is implemented using Racket’s standard

lex and yacc-style parsing tools [29] and supports a limited but representative set of SQL expres-
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sions (boolean and arithmetic expressions over columns, strings, and number literals).

This validation feature is primarily for usability rather than security: Racket’s standard database

library provides robust checks against SQL injection (such as a user providing "1; SELECT *

FROM secrets" as a WHERE clause), and the underlying DBMS will reject queries that correspond

to invalid view operations (for example, referencing a column that has been projected away). How-

ever, waiting to report an error back to the user until a fetch, update, insert, or delete is ex-

ecuted would make it very diஸஹ஭cult to debug the source of the error. This diஸஹ஭culty is exacerbated

both by the fact that the error would be from a SQL query generated by CapQL (rather than a

query the user directly wrote themselves) and by the typically inscrutable syntax errors provided

by DBMSs. Thus, there is a tradeoஸf between having to re-implement parsing and validation already

done by the DBMS and being able to provide timely and informative errors to users. Nonetheless,

the merits of providing such detection seem commensurate with the implementation eஸfort.
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4
Design and Implementation of ShillDB

ShillDB is a programming language designed to support running database-backed applications

with only as much database access as they need to perform their legitimate function. In most pro-

gramming languages, a program can access any resources that the user running the program can

access. Typically, a program inherits the ambient authority of the invoking user, which almost al-

ways confers far more privilege than the program needs. Further, it is only possible to reason accu-

rately about what resources the program accesses by reading through every line of its source code. By

contrast, a ShillDB program’s access to database resources is based on capabilitiॽ rather than the

ambient authority of the invoking user. Access to database tables in ShillDB is only possible by in-

voking operations on CapQL view capabilities. Every ShillDB function also comes with a contract

which can be used to enforce ஹ஭ne-grained access control policies on view capabilities passed as argu-

ments. Contracts can specify what privilegॽ are required on a capability, where privileges represent

the authority to invoke a particular CapQL operation. For example, a contract may specify that a
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view capability passed as an argument only has the +fetch privilege, meaning that the view is read-

only. Privileges also supportmodifiers to further reஹ஭ne the privilege, such as restricting a +update

privilege to only allow certain rows in the view to be updated. ShillDB contracts thereby serve as

executable documentation for the program’s authority. Through this use of contracts and capabilities,

a consumer of a ShillDB program can reason about the authority of a program just by examining

the contracts on functions and looking at what capabilities the program is given.

Because it is necessary to use ambient authority to create a starting set of capabilities, ShillDB is

divided into two languages: an ambient language and a capability-safe language. Ambient ShillDB

programs can use ambient authority to create the initial view capabilities that are passed to a capability-

safe program. These ambient ShillDB programs are intended to be very short so that someone

running a ShillDB program can quickly see what ambient authority it uses. To this end, the ambi-

ent language is highly restricted: ambient programs are only able to create capabilities for database

resources, perform a limited set of actions on those capabilities (for example, using a where clause

to restrict a view of a table), and invoke capability-safe functions. The capability-safe language is

designed to ensure that a capability-safe program can only access the capabilities it is given as initial

arguments and capabilities derived from these arguments. Functions deஹ஭ned in the capability-safe

language that are exported for use by ambient programs must have contracts attached that specify

the privileges they require on capability arguments.

Figure 4.1 shows an example of how ShillDB uses contracts and capabilities to control access to

database tables. The ambient program creates a capability for the students table and passes the

capability to a capability-safe program. The interface of capability-safe program then applies the con-

tract (view/c +fetch) to the given capability which declares that the only allowed operation on

the view is fetch. The contract serves as a wrapper or proxy object that receives operations that the

capability-safe program invokes on the capability. If the program calls fetch on the capability, the

contract will forward this operation on to the view capability, which in turn will fetch the contents

of the view from the DBMS. If, however, the capability-safe program invokes an operation that is

prohibited by the contract (e.g. update), the wrapper will reject the operation and signal a contract
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Figure 4.1: Contracts and capabilities in ShillDB. Capability-safe programs can only access database tables through ca-

pabilities passed in from an ambient program, or capabilities derived from this initial set. This restrictionmakes it possi-

ble to reason about a program’s access to database tables just by examining what capabilities the program receives and

the contracts on those capabilities. In this example, regardless of the capability-safe program’s implementation, the

contract guarantees that the only database operation the program can perform is fetching the students table.

failure, blaming the capability-safe program. Since the capability-safe program can only access the

DBMS through the given capabilities, contracts can mediate all interactions between programs and

the DBMS.

The rest of this chapter details how the design and features of ShillDB accomplish the goal of

providing database access control tools at the language level. Section 4.1 introduces ShillDB’s threat

model. Section 4.2 elaborates on capability-safety in ShillDB. Section 4.3 presents ShillDB’s con-

tract system and demonstrates how it can be used to write ஹ஭ne-grained security policies at program

interfaces. Finally, Section 4.4 describes the implementation of ShillDB.

4.1 ThreatModel

In ShillDB, programs written in the capability-safe language are treated as though they may be ma-

licious or contain bugs and are therefore untrusted. The database resources that these programs can

access are limited by what capabilities they are passed and the contracts on those capabilities. In par-

ticular, a ShillDB program has no access to resources for which it does not possess a capability and

cannot use capabilities in ways that are disallowed by the capabilities’ contracts. ShillDB assumes
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that contracts on functions are correct insofar as the user executing a ShillDB program wishes

to give the program the authority that the contracts specify. Therefore, consumers of ShillDB

programs must carefully examine the contracts at the interface of programs before running them.

Consumers need not, however, look at the implementation of the program in order to deduce what

database access the program has.

ShillDB’s trusted computing base includes the ShillDB runtime (and therefore the imple-

mentation of the Racket [15] programming language, including its standard database library [8]),

and the implementation of any DBMS that a ShillDB program accesses. The operating system

and hardware are also trusted. ShillDB therefore does not defend against programs that exploit

஺ாaws in the ShillDB implementation, the implementation of Racket, or DBMS implementations.

ShillDB does, however, defend against programs that attempt to circumvent its security guarantees

through SQL injection.

4.2 Limiting Access to Databases Tables

ShillDB programs can only access database tables through view capabilities. Therefore, in order to

see or manipulate data in a table, a ShillDB programmust have a capability for a view that contains

that data. ShillDB provides the CapQL operations on views introduced in Chapter 3; however, the

ability to open new views is only available in the ambient language. In the capability-safe language,

the only available capabilities are those passed in from an ambient program and capabilities derived

from those (for example, by using where to apply a more restrictive WHERE clause to a view).

Capability-safety is enforced by restricting the features available in the capability-safe language.

ShillDB does not provide functionality for opening new database connections directly or for

reading or writing to ஹ஭les (which could be used, for example, to read or modify SQLite .db ஹ஭les).

Further, ShillDB does not support serialization or deserialization of view capabilities or allow

global mutable state, both of which could be used to store capabilities between function calls. Fi-

nally, capability-safe programs can only import deஹ஭nitions from other capability-safe programs. In

particular, capability-safe programs cannot import deஹ஭nitions from the ambient language or from
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students
s_id name major
1 Mike Birbiglia Biology
2 Tig Notaro Computer Science
3 Patton Oswalt Computer Science

courses
c_id title
1 Standup 101
2 The Deal With Airline Food

ratings
course student rating
1 1 4.0
1 3 5.0
2 3 1.0

Figure 4.2: Schema used for a student course ratings application.

Racket libraries that allow direct access to system resources because this could allow a capability-safe

program to utilize ambient authority. Although these features limit the expressiveness of the lan-

guage, they ensure that it is always possible to reason about what capabilities a ShillDB program

can access just by looking at the initial arguments it is passed.

View capabilities provide a language-level abstraction to represent a subset of the data in a database,

either in one table or in multiple tables (as through a join). Thus, by using ambient authority to con-

struct new view capabilities, ambient programs can provide a capability-safe program with access to

just the portion of a database that the capability-safe program requires. As an example of the utility

of this feature, consider an application that displays the ratings that students have given to diஸferent

courses. The schema for the data backing this application might look like the one shown in Fig-

ure 4.2. In this schema, there is a students table that associates student ids with student names and

majors, a courses table that maps course titles to course ids, and a ratings table that stores how a

student rated a particular course out of 5. This data is clearly sensitive as it stores individual student

opinions of courses, which students expect to be kept private. In particular, the application for view-

ing the ratings has no legitimate use for the name column and therefore should be prohibited from

accessing name data.

There are nonetheless many legitimate uses of the data. One may wish to compute the average
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1 ; cap.rkt
2 #lang shilldb/cap
3

4 (provide avg-rating-by-major)
5

6 (define (avg-rating-by-major min-group v-ratings v-students v-courses)
7 (println
8 (fetch
9 (aggregate (join (join v-ratings v-students "student = s_id")
10 v-courses "course = c_id")
11 "title, AVG(rating), major"
12 #:groupby "title, major"
13 #:having (sqlformat "COUNT(course) >= $1" min-group)))))

(a) A capability-safe program that receives view capabilities and performs CapQL operations on them.

1 ; amb.rkt
2 #lang shilldb/ambient
3

4 (require "cap.rkt")
5

6 (define ratings (open-view "database.db" "ratings"))
7 (define students (select
8 (open-view "database.db" "students")
9 "s_id, major"))
10 (define courses (open-view "database.db" "courses"))
11

12 (avg-rating-by-major 10 ratings students courses)

(b) An ambient program that creates new view capabilities and invokes a capability-safe function. The program re-

stricts the students capability so that it does not provide access to the name column since the program has no

legitimate need for name data.

Figure 4.3: An example of using an ambient program to create capabilities and invoke a capability-safe program.
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rating that students in diஸferent majors assigned courses. This can be done without revealing too

much about individual student scores provided that the number of students with a particular ma-

jor in a class is large enough (if a professor knows that there was only one student in her course

who studied chemistry, the professor could easily use the per-major averages to deduce that stu-

dent’s rating of her course). Figure 4.3a shows the implementation of a capability-safe function

avg-rating-by-majorwhich takes in views for the ratings, students, and courses ta-

bles as well as an integer argument, min-group. The function then retrieves the average score for

all courses grouped by the major of the students who assigned the rating, but ஹ஭lters out results

where a major had fewer than min-group students represented in a particular class. The #lang

shilldb/cap annotation on line 2 indicates that this ஹ஭le is a capability-safe ShillDB program.

Line 4 exports the function for use by ambient programs. The body of the function consumes three

view capabilities and uses them to derive new view capabilities (by using join and aggregate on

lines 9-13) before ஹ஭nally fetching the desired data and printing it.

Figure 4.3b shows an ambient program that invokes avg-rating-by-major. The #lang

shilldb/ambient annotation indicates that this ஹ஭le is an ambient ShillDB program. Line 4

imports the deஹ஭nition of avg-rating-by-major from the capability-safe program shown in Fig-

ured 4.3a. Lines 6-10 deஹ஭ne view capabilities that will be passed to the avg-rating-by-major

function. Note that the ambient program is able to create these capabilities using global resource

names (that is, the names of database ஹ஭les and tables in the database), whereas the capability-safe pro-

gram cannot use these names to refer to database tables. If the underlying DBMS supports database

users, then user credentials would also be supplied in the ambient code when the capabilities are cre-

ated. On line 7, the ambient script restricts the students view by projecting away the name column

before passing the view to avg-rating-by-name because the function has no legitimate use for

student names. Since view capabilities do not provide any operation that can undo this projection,

this prevents the capability-safe code from viewing the name column. On line 12, the ambient pro-

gram invokes the imported function with the view capabilities constructed above and passes 10 as

the minimum group size.
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4.3 Contracts on View Capabilities

Capability-safety makes it possible to restrict the database access that a ShillDB program has by

controlling what capabilities the program is given, but it does not provide any guarantees on how

the given capabilities will be used. Although the informal speciஹ஭cation of avg-rating-by-major

states that it should not reveal average ratings representing fewer than min-group students’ opin-

ions, the version shown above provides no guarantee that the implementation will only use the

given capabilities as desired. In this small example, it is easy enough to read through the database

operations and deduce that the function implementation obeys this speciஹ஭cation; however, in a real

application, the function might make many queries, and the database queries might be intermingled

with other code irrelevant to this security concern, making it much more diஸஹ஭cult to examine the

implementation and decide if the database operations satisfy the intended security policy.

To remedy this, ShillDB allows writing contracts on capabilities to provide ஹ஭ne-grained, runtime-

enforceable security speciஹ஭cations for programs. Every function that a ShillDB program exports

must be accompanied by a contract which places restriction on what arguments can be passed to

the function and how they can be used (this was omitted in Figure 4.3a for simplicity). Consider a

simple Racket contract on avg-rating-by-major, which might look like:

(provide [avg-rating-by-major
(-> integer? view? view? view? void?)])

The provide form can be used to attach a contract to an exported value. In this case, the con-

tract speciஹ஭es that the function takes an integer and three view capabilities (for the ratings table,

the students table, and courses table, in that order) and returns nothing. While this contract

performs basic checks on the arguments and return value of avg-rating-by-major, it still does

not restrict how the capabilities can be used.

ShillDB provides contract combinators that make it possible to specify a more precise contract

on avg-rating-by-major. To restrict which operations can be invoked on each view, one could

use the following revised contract:

41



(define jfa/c (view/c +join +fetch +aggregate))

(provide [avg-rating-by-major
(-> integer? jfa/c jfa/c jfa/c void?)])

The ShillDB view/c contract combinator makes it possible to specify what privilegॽ a func-

tion requires on a view capability. Each privilege (such as +join or +fetch) represents the right

to invoke the corresponding CapQL operation on a capability. This revised contract will protect

against certain obviously buggy or malicious implementations of avg-rating-by-major, such as

one that attempts to update or delete rows in any of the tables. The contract is not, however, suஸஹ஭-

cient to enforce ஹ஭ner-grained security policies, such as requiring that any rating information revealed

should re஺ாect at least min-group number of student opinions.

Two more of ShillDB’s contract features are needed to enforce the desired access control policy

for this function. The ஹ஭rst is privilege modifiers, which can be used to further reஹ஭ne what operations

a privilege permits. Figure 4.4 shows all of the supported modiஹ஭ers for each ShillDB privilege. As

an example, the +aggregate privilege supports a #:withmodiஹ஭er which can be used to specify

the contract that a view should derive afிer an aggregation operation. This modiஹ஭er is useful for the

student directory application because one can specify that the view containing ratings only derives a

+fetch privilege afிer an appropriate aggregation is applied.

The second necessary feature is join groups, which provide a way to express constraints on how

particular views can be joined. Note that while most operations on view capabilities only operate on

a single capability, join is inherently binary. In many cases, it is natural to think about how a partic-

ular set of views can be joined together, rather than trying to write appropriate modiஹ஭ers for +join

privileges on individual views. To this end, ShillDB provides the ->/join and ->i/join contract

combinators for writing join group and dependent join group constraints on function arguments,

respectively. A join group confers the privilege that any views in the group to be joined together.

The #:premodiஹ஭er for unary join privileges is replaced by the ability to add particular views to the

group using the #:groups annotation in the contract. A join group allows for #:post and #:with

modiஹ஭ers similar to the unary join privilege modiஹ஭ers. A dependent join group diஸfers from a regular
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Privileges and Modi!ers

Privileges Modifier Description Example

+fetch
+update
+delete
+insert

#:restrict
Provides a restricted window into the 
view for a particular operation based on 
the given view to view function.

#:restrict (λ (v) (where v “id < 10”))

+aggregate

#:having
Filters out any groups in the resulting 
view that do not satisfy the given 
HAVING clause.

#:having “COUNT(*) > 10”

#:aggrs
Rejects any aggregation query that 
contains an aggregation function other 
than those listed.

#:aggrs “MIN, MAX”

#:with Speci!es what contract the view should 
derive after an aggregation.

#:with (view/c +fetch)

+join

#:pre
Rejects any joins that do not satisfy the 
given predicate over tables and join 
condition.

#:pre valid-foreign-key?

#:post
Applies the given view to view function 
to the result of joins. #:post (λ (v) (select v “id”))

#:with Speci!es what contract the view should 
derive after a join.

#:with (view/c +fetch)

+where
+select

——— ——— ———

Figure 4.4: Privileges andmodifiers in ShillDB.Modifiers can be used to refinewhat operations a particular privilege

permits. valid-foreign-key? in the example used for #:pre is a function that takes two views and awhere

clause and returns true just when either of the tables corresponding to the views has a foreign key field for the other

table and the where clause represents an equijoin on that key.
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1 (->i/join
2 ([X (min-group)
3 #:post (lambda (v) (select v "course, rating, major"))
4 #:with (view/c +join +select
5 [+aggregate
6 #:having (sqlformat "COUNT(*) > $1" min-group)
7 #:with (view/c +fetch)])])
8 ([min-group integer?])
9 [(view/c +join) #:groups X] ; v-ratings
10 [(view/c +join) #:groups X] ; v-students
11 (view/c +join +fetch +aggregate) ; v-courses
12 void?)

Figure 4.5: A contract for avg-rating-by-major (the provide form is omitted for brevity). Using a contract to

express security policies lets one specify policies in a declarative style and guarantees that ShillDBwill enforce the

policy regardless of the implementation of avg-rating-by-major. The contract also allows a consumer of the

program to read and understand the security specification without looking at the implementation andmakes it easy to

modify the specification and implementation separately.

join group in that the deஹ஭nition of the group can depend on the value of a function argument.*

Figure 4.5 combines all of the features of ShillDB contracts together to create the ஹ஭nal version

of the contract for avg-rating-by-major. Lines 2-7 create a dependent join group bound to the

identiஹ஭er X that depends on the value of the min-group argument. The join group requires that

afிer any join involving views in the group, the resulting view should be projected so the potentially

sensitive student ids are hidden (line 3). The join group also speciஹ஭es the contract that the result-

ing view should have (lines 4-7). In particular, this derived contract speciஹ஭es that it is only possible

to fetch the resulting view afிer ஹ஭rst aggregating the view (line 7) and that the aggregation must ஹ஭l-

ter out any groups that do not satisfy the group size requirement (line 6). The rest of the contract

speciஹ஭es contracts on each of the function arguments: min-groupmust be an integer (line 8), v-

*Note that the functionality of join groups cannot be accomplished simply by writing #:pre predicates
that check table names for two reasons. First, while table names uniquely identify tables in a database, they
do not uniquely identify view capabilities. A function may reasonably consume multiple capabilities that
represent diஸferent views of the same table and have diஸferent associated privileges. Second, a ShillDB func-
tion may be designed generically such that one of its arguments is a view that could represent diஸferent tables.
Thus, to properly allow for constraints on how views can be joined, it is necessary to be able to write contracts
that constrain which capability arguments can be joined together.
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ratings and v-students are views in the join group deஹ஭ned earlier (lines 9-10), v-courses is a

view with +join, +fetch, +aggregate privileges (line 11), and the function returns nothing (line

12).

This contract enforces two important security policies in avg-rating-by-major. First, it is not

possible to view course rating data unless it is the result of aggregating at least min-group students’

opinions. This policy is enforced by making sure the only way to derive the +fetch privilege on a

view containing rating data is to aggregate the result of joining the ratings and students tables

together, with the restriction that this aggregation will ஹ஭lter out any groups that are too small. Sec-

ond, the policy prohibits seeing course ratings associated with student ids. This is the result of the

post condition of the join group constraint which projects away the student and s_id columns

afிer students and ratings are joined together. Since both views prohibit fetching their contents

until afிer they have been joined (and then aggregated), it is also not possible to fetch both views

individually and perform the join manually using the results. The application legitimately needs ac-

cess to student ids to join the ratings and students tables, but it is desirable to prohibit viewing

ids and course ratings together in case student ids are generally accessible to professors (perhaps in a

student directory application).

View contracts function in two diஸferent ways. First, they might prohibit an operation outright.

Second, they may allow an operation but modify its eஸfect. Simple privileges are an example of the

ஹ஭rst sort of contract: calling fetch on a capability without the fetch privilege will result in a con-

tract failure, and program execution will stop. Similarly, attempting to join a view with another view

that is not in the same join group can cause a contract failure. However, consider the following con-

tract:

(view/c +fetch
[+delete #:restrict (lambda (v) (where v "dept = 10 OR dept = 11"))])

This contract provides diஸferent views of the underlying table depending on which operation is

invoked on the capability. In particular, the contract states that all the contents of the view can be
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fetched, but the #:restrictmodiஹ஭er restricts the delete privilege so that only rows where the

dept column is 10 or 11 can be deleted. This restriction on deletes is enforced through dynamic

query rewriting: any delete operations invoked on this view are rewritten to prevent queries from vi-

olating the security policy. In this case, rewriting queries requires adding an extra term to the WHERE

clause of any delete queries to enforce the restriction. This rewriting approach requires a much sim-

pler implementation than statically validating queries and less runtime overhead than dynamically

checking query results. The same technique is used to enforce #:restrict and #:havingmodi-

ஹ஭ers on other operations.

Internally, ShillDB contracts work by wrapping capabilities passed into a function in proxy ob-

jects. The body of a contracted function does not receive the capabilities directly but instead receives

the proxies. This allows the ShillDB runtime to intercept calls to operations on capabilities and

choose to allow, deny, or modify the operation before passing it on to the capability. If a proxy inter-

cepts an operation that is prohibited by contract, it will signal a contract failure and abort execution.

The contract violation error also includes blame information about which part of the program is at

fault for the policy violation to aid in debugging.

4.4 Implementation

I have implemented a prototype of ShillDB in Racket [15] using Racket’s macro system and tools

for creating languages [41]. Racket’s macro system allows writing functions from syntax objects to

other syntax objects (and is thus a form of source-to-source compilation). ShillDB syntax is de-

ஹ஭ned using macros that expand into Racket code, which can then be run using the standard Racket

runtime. ShillDB contract combinators like ->i/join present a syntactic interface for users to

write contracts but are compiled into a contract written using Racket’s contract system. Implement-

ing ShillDB in this way allows using Racket’s contract implementation and also makes it easy to

reuse Racket features that do not compromise security (for example, functions, let statements, or

Racket’s standard math library).
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(define (join v1 v2 [join-on ""])
(((compose (view-join-constraint v1)

(view-join-constraint v2))
join-impl)

v1
v2
join-on))

Figure 4.6: The implementation of the join operation on view capabilities. join takes two view arguments and

(optionally) a where clause to apply after the join. view-join-constraint is an operation on views (that is not

exposed to ShillDB users) that retrieves the join constraint stored for a particular view. join-impl (not shown) is

the actual, internal implementation of the join operation and has the same signature as join. The implementation

of join applies the join constraint contract projections to the internal join implementation and then passes the user-

supplied arguments to the contracted result.

4.4.1 Capabilities and Contracts

ShillDB uses CapQL to provide a capability-based interface for accessing database resources. Each

view capability is an object-like value that encapsulates information used to access a database, such

as the database and table name. Operations on capabilities either produce a new capability (e.g.

where) or call a corresponding operation on the actual database (e.g. update). Each operation

has a corresponding privilege that must be present in order for the operation to be invoked on the

capability.

ShillDB contracts are implemented using Racket’s contract facilities and create proxy objects

around capabilities, allowing contracts to interpose on operations and check privileges. Contracts

also allow for privilege modiஹ஭ers which can restrict or modify the arguments to an operation. For

example, the #:restrictmodiஹ஭er on a fetch, update, delete, or insert privilege modiஹ஭es an

operation so that it applies a more restrictive WHERE clause to the view before the original operation

is invoked on the view capability. The proxy objects are implemented as Racket struct imperson-

ators [39] which allow redirecting or modifying operations on a struct, making it possible to support

privileges and modiஹ஭ers.

Because joins are binary, the join operation is not implemented as an operation on individual
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capabilities. Instead, join is a regular function that consumes two view capabilities. Individual view

capabilities can store a contract projection [14] that the capability will apply to the join function.

A contract projection is a function that deஹ஭nes a contract’s behavior; eஸfectively, it is a function that

takes a value and returns the value afிer applying the contract to it. Within the implementation of

join, each of the views’ join constraint projections is applied to the internal implementation of the

join operation before invoking the contracted join implementation on the capabilities (Figure 4.6).

View proxies also store blame information so that violations of constraints on joins blame the cor-

rect party based on which view’s contract was broken.

Join groups are thus implemented by storing a join constraint in a proxy object around each of

the views in the group. It is not possible to implement this functionality using Racket’s standard

dependent contract combinator, ->i, as this would result in circularly dependent contracts. Specif-

ically, if two views are in a join group together, then the contract on each view must be deஹ஭ned in

terms of the other view. This makes it impossible to determine an appropriate order to evaluate

the contracts, since correct blame requires that a dependent contract be evaluated only afிer the

depended-on value’s contract has already been applied to that value [10]. Instead, the implementa-

tion of join groups uses a trick where each view in the group stores a mutable list of the views with

which it can be joined. As a join group contract is applied to the arguments of a function, each view

in the group is added to the lists of the other views in the group. Within the body of the function,

the lists will have been populated and the join constraints will work as desired. The one caveat is

that applying the contract to the arguments must not result in performing join on any of the argu-

ments, as the join constraints could be in an inconsistent state while the contract is being evaluated.

The ShillDB ->/join and ->i/join contract combinators are macros that hide the details of

the implementation of join groups from users. Users write relatively simple contracts which expand

out to a much longer and more complex Racket contract. However, ->/join and ->i/join do

not provide support for the full range of possibilities that Racket’s function contract combinators

provide (such as optional arguments or dependencies between function arguments). In the future,

I plan to devise a better implementation for join group constraints that is still easy to use but can be
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more easily composed with Racket’s existing function contract combinators, thus avoiding the need

to reimplement complicated functionality provided by built-in combinators like ->i and ->*.

4.4.2 Language Restrictions

In order to provide capability-safety guarantees, it is necessary for ShillDB to provide a restricted

subset of the functionality available in Racket.

Capability-safe Language

The capability-safe language does not allow access to certain Racket standard libraries that could al-

low accessing databases using ambient authority, such as the system library or the database library.

Mutable global variables are also not allowed, as this could allow a function to store capabilities

in global state between calls. View capabilities cannot be serialized or deserialized, as this could al-

low storing serialized capabilities in database tables. Finally, ShillDB capability-safe programs can

only import deஹ஭nitions from other capability-safe programs to prevent gaining access to functions

written in other languages that allow the use of ambient authority (such as Racket or the ambient

language).

Ambient Language

The ambient language is even further restricted. Ambient programs are intended be short and sim-

ple in order to facilitate easy reasoning about what ambient authority a program uses. Accordingly,

the language provides a minimal set of features. The ambient language can only import deஹ஭nitions

from capability-safe ShillDB programs, create base values like numbers and strings, deஹ஭ne im-

mutable values, invoke functions, and perform basic operations on view capabilities (such as restrict-

ing views with a WHERE clause). The one feature the ambient language has that the capability-safe

language does not is the ability to use ambient authority to create new view capabilities by referenc-

ing global database and table names.
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4.4.3 Language Interoperability

The only way to receive the security guarantees provided by ShillDB is to write programs using

the language. In the worst case, this means rewriting entire applications in ShillDB, which may be

arduous (due to the lack of features like mutable state) or impossible (due to the inability to read

or write to ஹ஭les). An ideal solution to this problem would be to add functionality to ShillDB that

allows extending ShillDB security guarantees to arbitrary executables that a ShillDB program

invokes. However, being able to intercept database queries issued by arbitrary executables would

require signiஹ஭cant future work and likely necessitate specialized database drivers or DBMSs.

Lacking this functionality, an alternative is writing sensitive portions of an application in ShillDB

and writing the rest of the program in a more feature-rich language in the Racket ecosystem, such

as Racket or Typed Racket. Racket’s implementation allows composing components written in

diஸferent languages within the Racket ecosystem [13]. This feature makes it possible for ambient

ShillDB programs to call functions written in the capability-safe language. By the same mecha-

nism, a Racket program could import a function deஹ஭nition from an ambient program and invoke

that function. While the entire program would not have ShillDB’s security guarantees, capability-

safe functions still retain their security guarantees. This technique also allows cleanly separating

sensitive, database-accessing components from the rest of the program. Thus, while the whole pro-

gram would still have ambient authority and would not run with least privilege, the interfaces of any

ShillDB components would still clearly specify and constrain the privileges that the components

require.

For this reason, I have extended the ambient language with the ability to deஹ஭ne and export func-

tions for use by other languages in the Racket ecosystem. Components that access database re-

sources can be written in ShillDB to enforce access control policies while the rest of the program

need not deal with the restrictions imposed by ShillDB. Designing programs in this way has the

added beneஹ஭t of encouraging authors to separate components of the program that can access databases

from those that cannot. For this approach to be eஸfective, it is still necessary for consumers of a pro-

gram to inspect the contracts on ShillDB components and make sure that components written in
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Racket do not use ambient authority to access databases.
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5
ShillDB in Action

To evaluate the usability and performance of ShillDB, I have used it to implement a library reser-

vation system. I have also implemented benchmarks for CapQL operations to better understand

the performance characteristics of individual operations. My evaluation indicates that ShillDB can

be used to enforce ஹ஭ne-grained database security policies in realistic, multi-user applications with

reasonable performance overheard and suggests directions for future performance optimizations.

Section 5.1 describes the library reservation case study. Section 5.2 presents and analyzes perfor-

mance results for ShillDB and CapQL.

5.1 Case Study

I have used ShillDB to implement a secure library reservation backend. The backend provides end-

points for common features on a library website such as looking up authors and books, checking a

user’s current reservations, and adding or removing reservations. Unlike a typical web application,
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the backend also has a detailed security interface for each endpoint. For example, the endpoint that

allows users to look up information about books has a contract specifying that the function can ac-

cess the aggregate number of current reservations for a book but not the details of who holds those

reservations. The speciஹ஭cations on endpoints that allow users to view or modify their reservations

have contracts restricting that only the logged-in user’s information can be viewed/modiஹ஭ed.

Some application logic in the library reservation system cannot naturally be expressed as ShillDB

contracts. In particular, ShillDB lacks constructs for writing contracts that determine whether an

operation is allowed based on the result of another database query. For example, a desirable check

might be to prevent a user from reserving the same book multiple times or to limit the total num-

ber of books a user can reserve. There is currently no way in ShillDB to write an insert contract to

enforce these checks, so they must be written as normal application code. Extending ShillDB’s con-

tract system to allow contracts with arbitrary predicates over the arguments to an operation would

allow enforcing both of these policies (e.g. one could enforce no duplicate reservations by writing

a predicate as part of an +insert privilege that looked up and validated the logged-in user’s reser-

vations). I believe that this extension would be straightforward to implement and would enable

pushing even more of the application’s database policies to the program’s interface.

The server is written in a combination of Racket and ShillDB code (see Section 4.4.3 for a dis-

cussion of language interoperability). The main loop of the server is implemented in Racket (to take

advantage of libraries for writing web servers in Racket which have not been vetted as safe to use in

ShillDB). The backend functionality that interacts with the database is implemented in capability-

safe ShillDB code. A short ambient ShillDB program provides an interface between the Racket

and ShillDB code and creates the necessary capabilities for use by the capability-safe implementa-

tions of the server endpoints. When the server receives a request, it calls the corresponding ShillDB

function to handle the request.

The implementation of the backend server required 35 lines of Racket code and 60 lines of capability-

safe ShillDB code (of which 14 lines specify contracts). The ambient program is 20 lines long.

Note that this small prototype does not handle user authentication or session management. For
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simplicity, the endpoints provided by the library server take a user id as an argument. In a real appli-

cation, the application would determine the id to pass to the capability-safe code based on the id of

the currently logged-in user. However, implementing proper user authentication is orthogonal to

ShillDB’s goal of enforcing ஹ஭ne-grained database security speciஹ஭cations.

5.2 Performance Analysis

The prototype implementations of ShillDB and CapQL focus on providing security guarantees

and have not yet been optimized for performance. Nonetheless, I used the library reservation sys-

tem as a performance benchmark to verify that the performance overhead of using ShillDB is not

outlandish.

The benchmark considers the performance of the library reservation system using four diஸfer-

ent implementations. As a baseline, I implemented the reservation system using Racket’s standard

database library. To examine the overhead of using CapQL instead of the standard database inter-

face, I implemented two diஸferent versions of the server in Racket using CapQL. The ஹ஭rst uses a

modiஹ஭ed CapQL implementation that does not install database triggers to enforce view constraints

for updates or inserts, while the second uses the CapQL prototype implemented as described in

Chapter 3. The ஹ஭nal conஹ஭guration replaces most of the Racket implementation with ShillDB code

complete with contracts specifying security policies (and corresponds to the implementation de-

scribed in the previous section).

For each conஹ஭guration, I considered three diஸferent sorts of request workloads for the server. The

ஹ஭rst workload consists of a series of 1,500 requests that require both reading from and writing to

the database (e.g. looking up books, adding new reservations, deleting existing reservations). The

second workload consists of 750 requests that require only database reads (e.g. looking up books

and reservations). The ஹ஭nal workload consists of 2,000 requests that only require insert options (i.e.

reserving books without ஹ஭rst looking up information about the books).

I ran each conஹ஭guration for each workload 50 times and computed the mean time to complete all

of the requests sequentially, along with 95% conஹ஭dence intervals. The performance measurements
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Figure 5.1: Average time required to run library reservation systemworkloads for the baseline (◦), CapQLwith no

triggers (□), CapQLwith triggers (△), and ShillDB implementation (⋄). 95% confidence intervals are indicated by

vertical bars (whichmay be obscured by plotting symbols when intervals are small). Note that y-axes begin at different

values to emphasize differences between configurations for each workload, but the scale is consistent between plots.

were conducted on a four core, 2.7 GHz i7 machine with 8GB of RAM running macOS 10.12.6.

Figure 5.1 displays the result.

First, observe that the slowdown for the ShillDB implementations is small for all three work-

loads: the largest slowdown was 5.43% in the read & write workload. Second, note that the biggest

diஸference in performance comes from going from the baseline to the CapQL implementation.

Adding in database triggers to enforce view constraints and adding in ShillDB contracts both re-

sult in negligible slowdowns compared to the CapQL implementation. Finally, note that ShillDB

and CapQL have comparatively large slowdowns in the read & write and read-only workloads

(5.43% and 3.87% respectively) compared to the insert-only workload (0.95%). The following sec-

tion examines the performance characteristics of diஸferent CapQL operations to help better explain

this ஹ஭nding. Overall, these results suggest that future performance improvements ought to focus on

the implementation of CapQL, with an emphasis on operations likes fetch, where, and delete.

5.2.1 CapQL Benchmarks

To better understand the overhead of database operations due to the implementation of CapQL,

I evaluated small benchmarks for diஸferent database operations using Racket’s standard database

library and CapQL operations. All of the benchmarks used a simple schema consisting of one table
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with two integer columns. The where benchmark performs a selection and a fetch for a particular

query selectivity.* The delete benchmark deletes a particular portion of the rows in the table. The

update benchmark performs a simple arithmetic update on a given portion of the rows in the table.

The CapQL implementation of the update benchmark restricts the view before updating using

a simple where clause to measure the overhead of installing and executing the database trigger for

the view. The insert benchmark inserts ten rows into the table. As in the update benchmark,

the CapQL implementation restricts the view before inserting. For both the update and insert

benchmarks, there is an accompanying version that uses a modiஹ஭ed CapQL implementation that

does not install database triggers.

I timed each of the benchmarks 100 times against a table with 50,000 rows for a variety of selec-

tivity values between 0% and 100% (except for the insert benchmarks for which the notion of

selectivity does not make sense). Figure 5.2 shows the mean execution times with 95% conஹ஭dence

intervals (lefி-hand column) and the mean slowdown for the CapQL implementation compared to

the baseline (right-hand column). The mean slowdown for the insert benchmark (not shown in

the ஹ஭gure) was 1.08×with triggers and 1.02×without triggers.

First, note that for read operations, the slowdown due to CapQL is negligible for large queries:

the time required to execute the query and bring the results into memory dwarfs the overhead. Sec-

ond, observe that, while the slowdown trends downwards with increasing query size for update

and delete operations, the overhead is still signiஹ஭cant for large queries. This is not due to the over-

head of checking triggers in updates because the trend is consistent for updates, for deletes (which

do not install triggers), and for the modiஹ஭ed update benchmark with no triggers. Instead, the trend

must be due to the fact that the cost of updates and deletes at the DBMS level in this case does not

increase as dramatically with increased selectivity as the cost of fetching data, and thus the overhead

of CapQL remains signiஹ஭cant even for large queries. Finally, note that these results are consistent

with the performance results from the library case study. Low selectivity deletes and fetches are the

worst case for CapQL compared to the standard database library, whereas the overhead of insertions

*Note that contrary to the meaning of the word selective, selectivity refers to the portion of rows that a
query aஸfects. A query with high selectivity thus aஸfects a large portion of rows.
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is small. This corroborates the result that the read & write workload (which consists primarily of

low-selectivity deletes and fetches with some inserts) and the read workload (low-selectivity fetches

only) performed much worse than the insert-only workload.

Finally, to understand why certain CapQL operations have such signiஹ஭cant overhead compared

Racket’s standard database interface, I used Racket’s statistical proஹ஭ler [30] to proஹ஭le one of the

CapQLmicrobenchmarks. I ran the where benchmark with 0% query selectivity 10,000 times, and

the proஹ஭ler collected samples to estimate the execution costs for diஸferent functions called during

the benchmark. Since the proஹ஭ler estimates execution time using random samples, the results it pro-

vides are not a perfectly accurate measure of execution time. Nonetheless, the results suggest that a

signiஹ஭cant portion of running time (about 1/3) was spent parsing and validating the WHERE clause

argument supplied to the where operation. This helps explain the results of the microbenchmarks,

as where, update, and delete all take SQL expressions as arguments which they parse and vali-

date, while insert does not have any SQL expression arguments. Further, this suggests that future

performance optimizations ought to focus on speeding up validation of SQL arguments or pushing

more of this work to the DBMS.
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Figure 5.2: Results for each CapQL benchmark. The left-hand column shows average runtime vs. query selectivity %

for the baseline (◦) and CapQL (□) configurations. 95% confidence intervals are indicated by vertical bars. The right-

hand column plots the slowdown of the CapQL implementation compared to the baseline vs. query selectivity %.
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6
RelatedWork

While there is a rich line of research in access control mechanisms at the DBMS level (see Bertino

et al. [4] for a comprehensive overview), it is most useful to consider this thesis in the context of

other work that uses language-based security techniques. To this end, this chapter considers three

categories of related work: approaches to supporting programming with least privilege, various uses

of sofிware contracts for application security, and other techniques for enforcing database security

policies at the language level.

6.1 Programming Language Support for the POLP

Shill is a secure shell scripting language that uses capabilities and contract to limit access to ஹ஭le sys-

tem and network resources. ShillDB uses the same techniques as Shill [27] to support running

applications with least privilege and follows a similar design and implementation. Shill is able to

transitively extend its authority guarantees to arbitrary executables using capability-based sandboxes
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to enforce contracts, which ShillDB does not support. As implemented, Shill sandboxes require

installing a special kernel module which is only implemented for FreeBSD. Adding sandboxes to

ShillDB would likely mean that language users would have to install specialized database drivers

or modiஹ஭ed DBMSs, increasing the setup required to use the language (currently, anyone with a

Racket installation can download and use ShillDB).

Other systems have also used language-level capabilities to support the POLP. The E program-

ming language [23] is an object capability language, where object references are treated as capabilities

to invoke operations on that object. Passing an object reference provides unattenuated access to the

underlying object, but it is possible to protect sensitive behaviors of objects by wrapping them in

proxy objects. Both ShillDB and Shill use contracts to provide a convenient way to express and

enforce these sorts of access abstractions at component interfaces. CapDesk [38] provides support

for launching applications written in E with limited authority. CapDesk allows applications to ne-

gotiate more authority from the user afிer they are launched, which ShillDB does not support.

CapDesk, however, does not have a scripting interface for writing security policies.

Melicher et. al [20] propose a module system which treats modules as ஹ஭rst-class capabilities. A

module can only access another module if it possesses a capability for that module, and capabili-

ties for sensitive resource modulॽ can only be obtained as arguments to anML-style functor [19].

Melicher et al. assume that a system is divided into a trusted code base and untrusted extensions

(whereas all ShillDB components are considered untrusted). They then use their module system to

reason about the authority that untrusted modules have to access system resources.

Many research eஸforts have sought to limit mainstream programming languages to capability-safe

subsets in order to better support reasoning about and limiting the authority of programs. These

approaches typically involve limiting the API of the original language and restricting access to am-

bient authority. Examples include Joe-E [21] (a subset of Java), Emily [37] (a subset of OCaml), and

Google’s Caja [24] (a subset of JavaScript). Unlike these capability-safe languages, ShillDB and

Shill leverage contracts to enforce access policies on capabilities at function interfaces and aim to

limit a program’s authority to access speciஹ஭c resources (database tables and ஹ஭le system resources, re-

60



spectively).

6.2 Software Contracts for Security

Prior work has also used contracts to enforce access control policies. Heidegger et al. [16] introduce

access permissions contracts to restrict the ஹ஭elds for which a method has read and write permissions

on a particular object. Dimoulas et al. [11] use contracts to control how capabilities can ஺ாow be-

tween components in object-capability languages. Shill [27] uses contracts to limit the ways that ஹ஭le

system and network capabilities can be used. ShillDB uses contracts in much the same way, but

provides contract features designed speciஹ஭cally for database access control policies.

Each of these systems, including ShillDB, is specialized for enforcing a particular type of access

control policy. Other contract systems allow enforcing more general policies. Moore et al. [26] use

authority environments to manage rights within an execution context and authorization contracts

to limit authority environments. Disney et al. [12] introduce temporal higher-order contracts that

can enforce temporal properties that are common in imperative programs (for example, requiring

functions to be called in a speciஹ஭c order).

6.3 Language-based Database Security

The approach to language-level database security most closely related to ShillDB’s is Caires et al.’s

[6] proposal for a reஹ஭nement type system that can statically check that programs adhere to database

access control policies. Data models are deஹ஭ned in an object-relational mapping (ORM) style and

security policies can be speciஹ஭ed for ஹ஭elds of data objects. In order for an access to be allowed, the

necessary conditions for that access must be deducible from the current knowledge. For example, the

type system could prevent a query that accesses a photo unless the program ஹ஭rst checks to ensure

that the photo belongs to a friend of the current user. In eஸfect, queries that return policy-violating

results are statically rejected. By contrast, ShillDB dynamically rewrites user queries to ஹ஭lter out

results that would violate access policies. Caires et al.’s type system also requires programmers to

provide knowledge annotations on functions to facilitate type checking. In some cases, the burden

61



of providing annotations (and the limited expressiveness of static types compared to dynamic con-

tracts) may be worthwhile to avoid the runtime overhead of contract checks or to gain static security

assurances. Attaching security policies to ஹ஭elds in an ORM deஹ஭nition provides a promising future

direction to improve the usability of ShillDB.

Other approaches have considered the problem of information flow instead of access control.

Information ஺ாow is able to address indirect or implicit data ஺ாows (for example, branching based on

a piece of sensitive information), which access control does not consider. SeLINQ [34] and UrFlow

[7] use static types to reject queries that violate information ஺ாow policies. Jacqueline [43] performs

dynamic query rewriting to enforce information ஺ாow policies (like ShillDB does for access policies).

Jacqueline uses a policy-agnostic approach in which information ஺ாow policies are factored out from

the rest of the application code and then managed by the framework. This is similar in philosophy

to ShillDB, in which access control policies are pushed to function interfaces and then enforced by

the language runtime.
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7
Conclusion and Research Outlook

ShillDB provides language-based support for running database-backed applications with least

privilege and enforcing ஹ஭ne-grained database access control policies. ShillDB is capability-safe and

ensures that programs can only access database resources based on the view capabilities they are

given, regardless of what user runs the program or what database credentials the programmay know.

Finally, ShillDB provides contract combinators tailored for writing ஹ஭ne-grained speciஹ஭cations for

how database views can be used, and the ShillDB runtime enforces these contracts. This allows

pushing access control policies to program interfaces, making it easy to inspect or modify the policy

without looking at the program’s implementation.

There are at least three possible directions for future work based on this thesis. First, many pos-

sible improvements exist for the prototype implementation of ShillDB: in particular, support-

ing more DBMSs, making certain ShillDB contract combinators easier to compose with Racket’s

contract system (see Section 4.4), or extending the expressiveness of the contract system (for exam-
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ple, to address the limitations discussed in Section 5.1). Second, extending the security guarantees

of ShillDB to arbitrary executables would allow users to take advantage of ShillDB’s security

features without rewriting their applications. Adding this functionality to ShillDB would likely

require custom database drivers that route requests to a database proxy or else modiஹ஭cations to ex-

isting DBMSs. Finally, it is worth considering if one could create a more general framework for

running applications with least privilege using contracts and capabilities. Such a framework might

allow Shill’s [27] ஹ஭lesystem and network capabilities as well as ShillDB’s view capabilities to exist

as plugins in a larger language, reducing the design and implementation eஸforts needed to support

other interfaces.
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